Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 December 2024 | Story Leonie Bolleurs | Photo Supplied
Yolandi Schoeman
Dr Yolandi Schoeman is redefining the future of ecological restoration with innovative solutions for both Earth and space.

Dr Yolandi Schoeman, a Senior Lecturer in Ecological Engineering in the Centre for Mineral Biogeochemistry at the University of the Free State (UFS) and the Ecological Engineering Institute of Africa, was fascinated by the synergy between engineering and the natural sciences from a young age.
 
She said that the potential within ecological engineering to regenerate ecosystems at all scales, from the microscopic to vast landscapes, really drew her in. “This field offers solutions not only for daily sustainability challenges but also for the threats to planetary health and human well-being. However, when I was starting out, ecological engineering wasn't recognised as a formal career path in South Africa, and studying it in the United States wasn't feasible for me at the time. So, I explored various educational paths in civil engineering and natural sciences, aiming to merge these disciplines in my projects and research. My ultimate goal has been to establish and develop the field of ecological engineering both in South Africa and across Africa,” she explained. 

Conventional and extreme ecological engineering

Dr Schoeman’s work in ecological engineering spans two main areas: conventional and extreme ecological engineering. On the conventional side, she says she is focusing on projects like designing constructed wetlands to naturally treat water, implementing urban greening initiatives to cool cities and manage stormwater, and regenerating various habitats to strengthen biodiversity. In terms of extreme ecological engineering, she focuses on developing innovative solutions for ecosystems that have been severely impacted by disasters like industrial accidents or natural calamities. 

Additionally, she is leading efforts in astro-ecological engineering, applying these principles to rehabilitate severely damaged terrestrial environments while exploring their potential for extraterrestrial applications, advancing both sustainability and ecological restoration.

There are two moments in her journey that Dr Schoeman recalled helped shape her career. One was being invited to participate in the 2006 Brightest Young Minds initiative, hosted by the University of Stellenbosch. She said that it was the first platform where she could really develop and share her ideas and vision in ecological engineering. “I contributed to a publication titled Engineering Engineering, which focused on integrating nature into every facet of development and operations. That experience validated my vision of combining engineering and natural systems.”

The other experience came during her studies in Executive Leadership at the Skolkovo School of Management in Moscow. “I was tasked with leading a multidisciplinary, international team that had to create a sustainability strategy for a major international iron, steel and vanadium company. The project pushed me to defend sustainability solutions that would alter the way this industrial giant operated. It was a deeply challenging process that changed my perception of true sustainability and what it means to deliver solutions that are both impactful and make business sense. That moment forced me to step out of the comfort zone of conventional sustainability and reorient my path toward pursuing solutions that seemed almost impossible, but necessary.”

Advancing ecological engineering across Africa

Two of the most important research projects she has been involved in include advancing ecological engineering across Africa and restoring and managing ecosystems that are considered beyond conventional repair. The first project involved establishing an international institution that spearheads various innovative research areas, including exploring floating treatment wetlands, different types of constructed wetlands, and technologies for smarter ecosystem management in urban and rural contexts. “This comprehensive project has substantially elevated the global understanding and application of ecological engineering, addressing a spectrum of sustainability challenges,” she said.

In the second project she worked with a team that tackled severely degraded environments like post-mining landscapes, heavily polluted industrial sites, and areas where ecosystem functionality has been drastically compromised. She also aims to develop the projects further and to collaborate with agencies like NASA to design life-support systems for future space habitats. “These systems are not limited to space applications, but are also designed to address complex planetary health issues in extreme environments on Earth, such as war zones, nuclear disaster areas, and sites affected by climatic catastrophes,” she remarked.

Dr Schoeman is also responsible for the "Astroecological Engineering System" (AES). “This system uniquely integrates terrestrial ecological engineering principles with astro-ecological technologies to deal with some of the most challenging environmental restoration projects on Earth and potentially in future space habitats,” she stated, adding that AES is specifically designed for restoring heavily degraded or contaminated ecosystems – situations where traditional restoration methods are inadequate. 

Pushing the boundaries of what’s possible 

She believes AES is a versatile tool for addressing some of the most daunting environmental challenges we currently face. This passion for handling seemingly insurmountable problems is what drives her work. 

“These are the issues that often push the boundaries of what's possible in ecological engineering. Each project that seems 'impossible' provides an opportunity not just to solve a problem, but to innovate and create methods that can be applied globally. It's about turning what was once thought unachievable into tangible, impactful realities that improve our environment and our relationship with the natural world. I truly believe that humanity holds the pen that can rewrite our future.”

About the future, she says that over the next 15 years she would like to see extreme ecological engineering, supported by astro-ecological insights, evolve into a foundational strategy in global environmental management. This approach will be key in scenarios where traditional restoration methods are inadequate. “My goal is to integrate these advanced, resilient techniques into mainstream disaster response and urban planning processes worldwide, preparing ecosystems and communities to withstand and adapt to future ecological stresses,” she said.

She also envisions a future where the principles of extreme and astro-ecological engineering are routinely taught in academic institutions and incorporated into public policy. “By raising awareness and building expertise on a global scale, I aim to cultivate a new generation of engineers – those who are not only equipped to take on severe environmental crises on Earth but are also prepared for the ecological challenges we may face in space. This ambitious vision drives a shift towards more resilient and adaptive management of Earth's ecosystems, ensuring they thrive amidst the challenges of the 21st century.”

News Archive

Inaugural lecture: Prof. Annette Wilkinson
2008-04-16

A strong plea for a pursuit of “scholarship” in higher education

Prof. Annette Wilkinson of the Centre for Higher Education Studies and Development in the Faculty of the Humanities at the University of the Free State (UFS) made as strong plea for a pursuit of “scholarship” in higher education.

She said in her inaugural lecture that higher education has to deal with changes and demands that necessitate innovative approaches and creative thinking when it concerns effective teaching and learning in a challenging and demanding higher education environment. She referred to a recent research report prepared for the Council for Higher Education (CHE) which spells out the alarming situation regarding attrition rates and graduation output in South African higher education and emphasises factors leading to the situation. These factors include socio-economic conditions and shortcomings in the school and the subsequent under preparedness of a very large proportion of the current student population. However, what is regarded as one of the key factors within the sector’s control is the implementation of strategies for improving graduate output.

She said: “The CHE report expresses concern about academics’ adherence to traditional teaching practices at institutions, which have not changed significantly to make provision for the dramatic increase in diversity since the 1980s.

“Raising the profile of teaching and learning in terms of accountability, recognition and scholarship is essential for successful capacity-building,” she said. “The notion of scholarship, however, brings to the minds of many academics the burden of ‘publish or perish’. In many instances, the pressures to be research-active are draining the value put on teaching. Institutions demand that staff produce research outputs in order to qualify for any of the so-called three Rs – resources, rewards and recognition.

“These have been abundant for research, but scarce when it comes to teaching – with the status of the latter just not on the same level as that of research. From within their demanding teaching environments many lecturers just feel they do not have the time to spend on research because of heavy workloads, that their efforts are under-valued and that they have to strive on the basis of intrinsic rewards.”

She said: “It is an unfortunate situation that educational expertise, in particular on disciplinary level, is not valued, even though in most courses, as in the Programme in Higher Education Studies at the UFS, all applications, whether in assignments, projects or learning material design, are directly applied to the disciplinary context. We work in a challenging environment where the important task of preparing students for tomorrow requires advanced disciplinary together with pedagogical knowledge.”

Prof. Wilkinson argued that a pursuit of the scholarship of teaching and learning holds the potential of not only improving teaching and learning and consequently success rates of students, but also of raising the status of teaching and recognising the immense inputs of lecturers who excel in a very demanding environment. She emphasised that not all teaching staff will progress to the scholarship level or are interested in such an endeavour. She therefore suggested a model in which performance in the area of teaching and learning can be recognised, rewarded and equally valued on three distinct levels, namely the levels of excellence, expertise and scholarship. An important feature of the model is that staff in managerial, administrative and support posts can also be rewarded for their contributions on the different levels for all teaching related work.

Prof. Wilkinson also emphasised the responsibility or rather, accountability, of institutions as a whole, as well as individual staff members, in providing an environment and infrastructure where students can develop to their full potential. She said that in this environment the development of the proficiency of staff members towards the levels of excellence, expertise and scholarship must be regarded as a priority.

“If we want to improve students’ success rates the institution should not be satisfied with the involvement in professional development opportunities by a small minority, but should set it as a requirement for all teaching staff, in particular on entry into the profession and for promotion purposes. An innovative approach towards a system of continuous professional development, valued and sought after, should be considered and built into the institutional performance management system.”

As an example of what can be achieved, Prof. Wilkinson highlighted the work of one of the most successful student support programmes at the UFS, namely the Career Preparation Programme (CPP), implemented fourteen years ago, bringing opportunities to thousands of students without matric exemption. The programme is characterised by dedicated staff, a challenging resource-based approach and foundational courses addressing various forms of under preparedness. Since 1993 3 422 students gained entry into UFS degree programmes after successfully completing the CPP; since 1996 1 014 of these students obtained their degrees, 95 got their honours degrees, 18 their master’s degrees and six successfully completed their studies as medical doctors.

Prof. Wilkinson said: “I believe we have the structures and the potential to become a leading teaching-learning university and region, where excellence, expertise and scholarship are recognised, honoured and rewarded.”

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept