Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 December 2024 | Story André Damons | Photo André Damons
Dr Innocensia Mangoato
Dr Innocensia Mangoato graduated on Tuesday (10 December 2024) with degree Doctor of Philosophy with specialisation in pharmacology at the Faculty of Health Sciences’ December graduation ceremony. Here she is with her supervisor and mentor Prof Motlalepula Matsabisa, Director of the University of the Free State (UFS) Department of Pharmacology.

A lecturer and researcher from the University of the Free State (UFS) Department of Pharmacology hopes her research into the use of cannabis in reversing anticancer drug resistance is a step forward into treating various cancers especially in Southern Africa.

Dr Innocensia Mangoato graduated on Tuesday (10 December 2024) with the degree Doctor of Philosophy with specialisation in pharmacology at the Faculty of Health Sciences’ December graduation ceremony. She started her career as a research scientist in the area of African traditional medicines in 2018 and her research received both national and international recognition.

“It’s an amazing (feeling to graduate today). My PhD journey was smooth and beautiful and with mentorship of Prof (Motlalepula) Matsabisa, who groomed me well, I did not shed a tear,” said Dr Mangoato. Dr Gudrun S Ulrich-Merzenich from the University of Bonn in Germany, was her co-supervisor with Prof Matsabisa.

According to the graduation programme, Dr Mangoato, Lecturer and Researcher in the UFS Department of Pharmacology, with her thesis titled Investigating the anticancer and possible resistant reversal effects of cannabis sativa l. extracts in cervical cancer cell lines and modulation of ABC transporters comprehensively explored the therapeutic potential of Cannabis sativa L. in overcoming drug resistance in cervical cancer using in vitro and network pharmacology approaches.

A step forward for treating various cancers

The research looked at the chemical fingerprints and pharmacological targets of C. sativa L. extracts, highlighting its antiproliferative properties against normal non-cancerous cells, cervical cancer cells and the cisplatin-resistant cervical cancer cells. Through PCR analysis, distinct gene expression profiles were identified, revealing the potential effects of combination treatments to counteract cisplatin resistance by downregulating genes associated with drug transporters and crucial signalling pathways. This work provides valuable insights into innovative therapeutic strategies for improving cervical cancer treatment, highlighting new avenues for overcoming resistance and enhancing treatment efficacy though the possible use of plant extracts.

“I hope my research takes a step forward in treating various cancers – especially gynaecology cancers in the Southern Hemisphere in Africa. Hopefully the research can later transcend into clinical trials and hopefully influence more policymakers. We also hope to further develop cannabis to be used as an adjuvant therapy for those drugs that are failing to treat cancer,” says Dr Mangoato, who was the recipient of the Women in Science Master’s Student in 2018.

Her graduation was also a proud moment for Prof Matsabisa, an expert in traditional African medicine, who was like a father to her during her studies. “Prof identified me from my honours degree and walked this journey with me. He has been a great mentor, a father and an amazing supervisor.”

Dr Mangoato says she will for now focus on research only and helping and monitoring upcoming researchers, especially female researchers as there is a scarcity of them her field. 

News Archive

Researcher works on finding practical solutions to plant diseases for farmers
2017-10-03

 Description: Lisa read more Tags: Plant disease, Lisa Ann Rothman, Department of Plant Sciences, 3 Minute Thesis,  

Lisa Ann Rothman, researcher in the Department of
Plant Sciences.
Photo: Supplied

 


Plant disease epidemics have wreaked havoc for many centuries. Notable examples are the devastating Great Famine in Ireland and the Witches of Salem. 

Plant diseases form, due to a reaction to suitable environments, when a susceptible host and viable disease causal organism are present. If the interactions between these three factors are monitored over space and time the outcome has the ability to form a “simplification of reality”. This is more formally known as a plant disease model. Lisa Ann Rothman, a researcher in the Department of Plant Sciences at the University of the Free State (UFS) participated in the Three Minute Thesis competition in which she presented on Using mathematical models to predict plant disease. 

Forecast models provide promise fighting plant diseases
The aim of Lisa’s study is to identify weather and other driving variables that interact with critical host growth stages and pathogens to favour disease incidence and severity, for future development of risk forecasting models. Lisa used the disease, sorghum grain mold, caused by colonisation of Fusarium graminearum, and concomitant mycotoxin production to illustrate the modelling process. 

She said: “Internationally, forecasting models for many plant diseases exist and are applied commercially for important agricultural crops. The application of these models in a South African context has been limited, but provides promise for effective disease intervention technologies.

Contributing to the betterment of society
“My BSc Agric (Plant Pathology) undergraduate degree was completed in combination with Agrometeorology, agricultural weather science. I knew that I wanted to combine my love for weather science with my primary interest, Plant Pathology. 
“My research is built on the statement of Lord Kelvin: ‘To measure is to know and if you cannot measure it, you cannot improve it’. Measuring the changes in plant disease epidemics allows for these models to be developed and ultimately provide practical solutions for our farmers. Plant disease prediction models have the potential ability to reduce the risk for famers, allowing the timing of fungicide applications to be optimised, thus protecting their yields and ultimately their livelihoods. I am continuing my studies in agriculture in the hope of contributing to the betterment of society.” 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept