Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 December 2024 | Story André Damons | Photo André Damons
Dr Innocensia Mangoato
Dr Innocensia Mangoato graduated on Tuesday (10 December 2024) with degree Doctor of Philosophy with specialisation in pharmacology at the Faculty of Health Sciences’ December graduation ceremony. Here she is with her supervisor and mentor Prof Motlalepula Matsabisa, Director of the University of the Free State (UFS) Department of Pharmacology.

A lecturer and researcher from the University of the Free State (UFS) Department of Pharmacology hopes her research into the use of cannabis in reversing anticancer drug resistance is a step forward into treating various cancers especially in Southern Africa.

Dr Innocensia Mangoato graduated on Tuesday (10 December 2024) with the degree Doctor of Philosophy with specialisation in pharmacology at the Faculty of Health Sciences’ December graduation ceremony. She started her career as a research scientist in the area of African traditional medicines in 2018 and her research received both national and international recognition.

“It’s an amazing (feeling to graduate today). My PhD journey was smooth and beautiful and with mentorship of Prof (Motlalepula) Matsabisa, who groomed me well, I did not shed a tear,” said Dr Mangoato. Dr Gudrun S Ulrich-Merzenich from the University of Bonn in Germany, was her co-supervisor with Prof Matsabisa.

According to the graduation programme, Dr Mangoato, Lecturer and Researcher in the UFS Department of Pharmacology, with her thesis titled Investigating the anticancer and possible resistant reversal effects of cannabis sativa l. extracts in cervical cancer cell lines and modulation of ABC transporters comprehensively explored the therapeutic potential of Cannabis sativa L. in overcoming drug resistance in cervical cancer using in vitro and network pharmacology approaches.

A step forward for treating various cancers

The research looked at the chemical fingerprints and pharmacological targets of C. sativa L. extracts, highlighting its antiproliferative properties against normal non-cancerous cells, cervical cancer cells and the cisplatin-resistant cervical cancer cells. Through PCR analysis, distinct gene expression profiles were identified, revealing the potential effects of combination treatments to counteract cisplatin resistance by downregulating genes associated with drug transporters and crucial signalling pathways. This work provides valuable insights into innovative therapeutic strategies for improving cervical cancer treatment, highlighting new avenues for overcoming resistance and enhancing treatment efficacy though the possible use of plant extracts.

“I hope my research takes a step forward in treating various cancers – especially gynaecology cancers in the Southern Hemisphere in Africa. Hopefully the research can later transcend into clinical trials and hopefully influence more policymakers. We also hope to further develop cannabis to be used as an adjuvant therapy for those drugs that are failing to treat cancer,” says Dr Mangoato, who was the recipient of the Women in Science Master’s Student in 2018.

Her graduation was also a proud moment for Prof Matsabisa, an expert in traditional African medicine, who was like a father to her during her studies. “Prof identified me from my honours degree and walked this journey with me. He has been a great mentor, a father and an amazing supervisor.”

Dr Mangoato says she will for now focus on research only and helping and monitoring upcoming researchers, especially female researchers as there is a scarcity of them her field. 

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept