Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 December 2024 | Story André Damons | Photo André Damons
Dr Innocensia Mangoato
Dr Innocensia Mangoato graduated on Tuesday (10 December 2024) with degree Doctor of Philosophy with specialisation in pharmacology at the Faculty of Health Sciences’ December graduation ceremony. Here she is with her supervisor and mentor Prof Motlalepula Matsabisa, Director of the University of the Free State (UFS) Department of Pharmacology.

A lecturer and researcher from the University of the Free State (UFS) Department of Pharmacology hopes her research into the use of cannabis in reversing anticancer drug resistance is a step forward into treating various cancers especially in Southern Africa.

Dr Innocensia Mangoato graduated on Tuesday (10 December 2024) with the degree Doctor of Philosophy with specialisation in pharmacology at the Faculty of Health Sciences’ December graduation ceremony. She started her career as a research scientist in the area of African traditional medicines in 2018 and her research received both national and international recognition.

“It’s an amazing (feeling to graduate today). My PhD journey was smooth and beautiful and with mentorship of Prof (Motlalepula) Matsabisa, who groomed me well, I did not shed a tear,” said Dr Mangoato. Dr Gudrun S Ulrich-Merzenich from the University of Bonn in Germany, was her co-supervisor with Prof Matsabisa.

According to the graduation programme, Dr Mangoato, Lecturer and Researcher in the UFS Department of Pharmacology, with her thesis titled Investigating the anticancer and possible resistant reversal effects of cannabis sativa l. extracts in cervical cancer cell lines and modulation of ABC transporters comprehensively explored the therapeutic potential of Cannabis sativa L. in overcoming drug resistance in cervical cancer using in vitro and network pharmacology approaches.

A step forward for treating various cancers

The research looked at the chemical fingerprints and pharmacological targets of C. sativa L. extracts, highlighting its antiproliferative properties against normal non-cancerous cells, cervical cancer cells and the cisplatin-resistant cervical cancer cells. Through PCR analysis, distinct gene expression profiles were identified, revealing the potential effects of combination treatments to counteract cisplatin resistance by downregulating genes associated with drug transporters and crucial signalling pathways. This work provides valuable insights into innovative therapeutic strategies for improving cervical cancer treatment, highlighting new avenues for overcoming resistance and enhancing treatment efficacy though the possible use of plant extracts.

“I hope my research takes a step forward in treating various cancers – especially gynaecology cancers in the Southern Hemisphere in Africa. Hopefully the research can later transcend into clinical trials and hopefully influence more policymakers. We also hope to further develop cannabis to be used as an adjuvant therapy for those drugs that are failing to treat cancer,” says Dr Mangoato, who was the recipient of the Women in Science Master’s Student in 2018.

Her graduation was also a proud moment for Prof Matsabisa, an expert in traditional African medicine, who was like a father to her during her studies. “Prof identified me from my honours degree and walked this journey with me. He has been a great mentor, a father and an amazing supervisor.”

Dr Mangoato says she will for now focus on research only and helping and monitoring upcoming researchers, especially female researchers as there is a scarcity of them her field. 

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept