Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 December 2024 | Story André Damons | Photo André Damons
Dr Innocensia Mangoato
Dr Innocensia Mangoato graduated on Tuesday (10 December 2024) with degree Doctor of Philosophy with specialisation in pharmacology at the Faculty of Health Sciences’ December graduation ceremony. Here she is with her supervisor and mentor Prof Motlalepula Matsabisa, Director of the University of the Free State (UFS) Department of Pharmacology.

A lecturer and researcher from the University of the Free State (UFS) Department of Pharmacology hopes her research into the use of cannabis in reversing anticancer drug resistance is a step forward into treating various cancers especially in Southern Africa.

Dr Innocensia Mangoato graduated on Tuesday (10 December 2024) with the degree Doctor of Philosophy with specialisation in pharmacology at the Faculty of Health Sciences’ December graduation ceremony. She started her career as a research scientist in the area of African traditional medicines in 2018 and her research received both national and international recognition.

“It’s an amazing (feeling to graduate today). My PhD journey was smooth and beautiful and with mentorship of Prof (Motlalepula) Matsabisa, who groomed me well, I did not shed a tear,” said Dr Mangoato. Dr Gudrun S Ulrich-Merzenich from the University of Bonn in Germany, was her co-supervisor with Prof Matsabisa.

According to the graduation programme, Dr Mangoato, Lecturer and Researcher in the UFS Department of Pharmacology, with her thesis titled Investigating the anticancer and possible resistant reversal effects of cannabis sativa l. extracts in cervical cancer cell lines and modulation of ABC transporters comprehensively explored the therapeutic potential of Cannabis sativa L. in overcoming drug resistance in cervical cancer using in vitro and network pharmacology approaches.

A step forward for treating various cancers

The research looked at the chemical fingerprints and pharmacological targets of C. sativa L. extracts, highlighting its antiproliferative properties against normal non-cancerous cells, cervical cancer cells and the cisplatin-resistant cervical cancer cells. Through PCR analysis, distinct gene expression profiles were identified, revealing the potential effects of combination treatments to counteract cisplatin resistance by downregulating genes associated with drug transporters and crucial signalling pathways. This work provides valuable insights into innovative therapeutic strategies for improving cervical cancer treatment, highlighting new avenues for overcoming resistance and enhancing treatment efficacy though the possible use of plant extracts.

“I hope my research takes a step forward in treating various cancers – especially gynaecology cancers in the Southern Hemisphere in Africa. Hopefully the research can later transcend into clinical trials and hopefully influence more policymakers. We also hope to further develop cannabis to be used as an adjuvant therapy for those drugs that are failing to treat cancer,” says Dr Mangoato, who was the recipient of the Women in Science Master’s Student in 2018.

Her graduation was also a proud moment for Prof Matsabisa, an expert in traditional African medicine, who was like a father to her during her studies. “Prof identified me from my honours degree and walked this journey with me. He has been a great mentor, a father and an amazing supervisor.”

Dr Mangoato says she will for now focus on research only and helping and monitoring upcoming researchers, especially female researchers as there is a scarcity of them her field. 

News Archive

UFS venture cleans up acid mine drainage
2015-07-06

The system that puts oxygen back into the water.

Photo: Supplied

South Africa is one of the most important mining countries in the world, beginning in the 1870s. Although the mining industry has been responsible for significant development and employment, it pollutes the environment and waters sources. Through the joint effort of a well-known mining company, the University of the Free State, and the Technology Innovation Agency (UFS/TIA) SAENSE Group, a new treatment for Acid Mine Drainage (AMD) has been developed.

The system treats the major contaminants found in acid mining wastewater effectively.  
 
The UFS remediation systems use a reservoir tank into which the AMD is pumped. The water then flows passively (without using energy) to the Barium Carbonate Dispersed Alkaline Substrate (BDAS) system. The metals and anions in the AMD react chemically with the barium carbonate and precipitate (form solids). The solids stay in the tank while the clean water is released.

The efficacy and applicability of the research was demonstrated on site in Belfast, Mpumalanga where the team constructed a pilot plant in July 2014. This patented technology has treated 1 814 400 litres of Acid Mine Drainage to date with an outflow water quality that satisfies the South African National Standards (SANS) 241:2006 & 2011 regulations for drinking water.   

Rohan Posthumus from the (UFS/TIA) SAENSE Group said: “At this stage, we do not recommend that the water should be used as drinking water, but certainly it can lower water usage in mines while finding application in dust suppression of washing processes. The team would like to complete a full characterisation of the final released water. There are currently no toxic by-products formed, and even very basic filtration can make the outflow drinking water.”

Prof Esta van Heerden’s research group from the Department of Microbial, Biochemical, and Food Biotechnology has been working on AMD research for some time, but the development of the BDAS system was started in 2013 by post-doctoral student, Dr Julio Castillo, and his junior researcher, Rohan Posthumus.

The data from the BDAS system have led to two publications in peer-reviewed journals as well as a registered patent.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept