Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 December 2024 | Story Leonie Bolleurs | Photo Supplied
Dr Busisiwe Ntsele
Dr Busisiwe Ntsele earned her joint PhD from the UFS and Vrije Universiteit Amsterdam in the Netherlands. Looking ahead, her mission is to equip graduates with the skills to conduct research that addresses community needs with and by the community, highlighting the mutual benefits of true collaboration.

Dr Busisiwe Ntsele, a first-generation interdisciplinary scholar with a rich background in law, sociology, and human rights, returned to South Africa this year after completing a joint PhD degree between the University of the Free State (UFS) and Vrije Universiteit Amsterdam (VUA) in the Netherlands. Her mission is clear: to plant seeds of hope and drive transformative change in her community.

“My purpose is to share transformative narratives of change by spreading pockets of hope for young black girls who are often perceived to be at the bottom of the barrel in any given society,” says Dr Ntsele.

Her encounter with gender-based violence and involvement in advocacy and mobilisation of communities to stop gender-based violence sparked her passion for human rights and social justice.

Recognised for her contributions to building a just society, Dr Ntsele was awarded the prestigious Desmond Tutu Fellowship by the National Research Foundation, which supported her in pursuing this dual-degree opportunity. The title of her PhD thesis is A Critical Study of Community Engagement at a South African University.

Walking across the stage on Monday 9 December 2024 to receive her PhD during the UFS December Graduation Ceremonies on the Bloemfontein Campus marked the second time Dr Ntsele has celebrated this achievement in 2024. Earlier this year, in June, she defended her PhD in Amsterdam. In addition to her PhD, she holds a Bachelor of Arts in Law (UNESWA), a BA Honours in Industrial Sociology (UJ), and an MA in International Human Rights Law (Wits).

A double-barrel PhD

Speaking about her PhD, Dr Ntsele says the focus of her work was to critically study community engagement in South African universities using the UFS as a case study. “This case study equips us to understand community engagement (CE) and engaged scholarship (ES) within South Africa's higher education context,” she adds.

Her research explored how CE aligns with the UFS vision of supporting social justice, while addressing its broader role in post-apartheid South Africa. Through document analysis, interviews, and observations, she investigated the experiences of community members, students, staff, and policy makers involved in CE programmes.

Completing a joint PhD with four supervisors across two institutions not only exposed her to different skills, experiences, and varying personalities, but also offered a range of benefits. “In my case, it provided access to diverse expertise, research facilities, and methodologies, enriching the academic experience and strengthening innovative, interdisciplinary thinking.” The collaboration expanded her professional networks and connected her with global academic communities.

“As a first-generation student, I was never confident about my capabilities, but such exposure to varied academic systems and cultural perspectives improved my adaptability,” she explained.

“For the first time I saw myself as black, and I was not ashamed of my blackness. Instead, I was determined to put my community on the map by telling stories of hope. This hope inspired me to showcase the rich narratives of communities, highlighting how co-creating solutions alongside them can lead to epistemic justice, decolonisation, and the breaking down of knowledge hierarchy,” she reflects.

Decolonising education

Central to her study is the Meraka community, which beautifully tells the story of students, teachers, and community members who came together to build an indigenous cultural village using traditional methods combined with academic and scientific knowledge. “Meraka is not just a construction project; it’s about building relationships and valuing humility. The Meraka project is a typical example of how we can decolonise education by centring indigenous knowledge and supporting it with scientific research and lived experiences of the community,” she notes.

“By hearing the voices of the people in the community and treating them as equal contributors, my study contributed to an understanding of CE and its potential for co-creative and socially just outcomes in a rapidly evolving South African higher education context,” she states.

In the future, Dr Ntsele plans to pursue postdoctoral research, publish her findings, and advocate for the importance of integrating different forms of knowledge. Her goal is to educate graduates on the value of conducting research that addresses community needs with the community and by the community, emphasising the mutual benefits of such collaborative efforts.

Engaging with communities from start to finish of the project, Dr Ntsele found that universities must recognise the critical role academics play in addressing the invisible power dynamics that hinder engaged scholarship from reaching its full potential. “If universities are to break down institutional cultures, they need to confront normalised power structures and embrace partnerships that are mutually beneficial. They must also start treating communities as equal partners who have their own voice, rather than as blank slates or vulnerable groups in need of empowerment,” says Dr Ntsele. 

Also read and listen

Click to view documentMeraka Blog

Click to view documentNarratives of Change Podcast

Click to view documentCommon Good Digital story

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept