Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 December 2024 | Story André Damons | Photo André Damons
Breast Cancer Research 2024
The research team consist of Dr Beynon Abrahams (left), Viwe Fokazi, MMed.Sci student, and PhD student Songezo Vazi.

In an effort to better understand chemotherapeutic treatment response in triple negative breast cancer (TNBC) – known as an aggressive cancer with high recurrence and high mortality rate in breast cancer patients – researchers from the University of the Free State (UFS) developed a drug-resistant TNBC spheroid model that is physiologically more accurate in displaying the complexities involved in drug-resistance development.

Dr Beynon Abrahams, Lecturer in the Department of Basic Medical Sciences within the UFS Faculty of Health Sciences, says breast cancer remains the most frequently diagnosed cancer in women. It is also the most debilitating type of cancer responsible for the highest cancer mortality rates in women. Though various subtypes of breast cancer exist, TNBC is one that is of particular interest to his research team.

“TNBC is one of the most difficult cancer types to treat, due to lack of treatment targets. This often leads to treatment failure in TNBC patients, with drug resistance being a common occurrence, contributing to high death rates. TNBC is classified based on its lack of expression of common receptors such as the estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2, which are commonly expressed in other cancer subtypes.

“Characteristically, TNBC is known as an aggressive cancer with high metastatic potential (spreading of cancer), resulting in a poor prognosis for these patients. The current prescribed therapies for TNBC, entails multidrug combination systemic therapy including chemotherapeutic agents such as doxorubicin and cisplatin as adjuvant therapy. However, despite these therapeutic interventions, drug resistance is a common occurrence,” says Dr Abrahams.

The best available preclinical cell-based models should be used

For effective drug treatments to be developed for TNBC therapeutics, he continues, the best available disease models should be used to not only improve our understanding of the disease physiology and its numerous mechanisms involved in chemotherapeutic resistance development but also to provide accurate results when determining how safe and effective newly developed drugs are, before they may be considered for further development and testing on humans.

According to him, in preclinical cancer research the conventional methods employed to study disease mechanisms, drug action and drug resistance is ineffective. Firstly, the traditionally used preclinical 2-dimensional (2-D) cell culture models do not accurately recapitulate the architectural biology observed in vivo, second, the drug responses assessed in these models may provide inaccurate results and limit its translational potential, explains Dr Abrahams. Thus, more advanced cell-based models such as 3-dimensional (3-D) spheroids and organoids to name a few, should be considered as alternatives.

The UFS research team, in collaboration with the Centre of Excellence for Pharmaceutical Sciences (Pharmacen™) at the North-West University (NWU), recently took the undertaking to establish two triple negative breast cancer 3-D spheroid models, using the clinostat rotating bioreactor ClinoStar™ system, designed by CelVivo in Denmark. The project is funded by the National Research Foundation.

The ClinoStar™ system promotes the self-aggregation of single cells, and natural formation of 3-D spheroids, through slow rotation within a cell growth chamber known as an incubator. There are various techniques and methods available to develop spheroids and organoids, however the ClinoStar™ systems allow for the development of metabolically stable spheroids, over a longer period of time, as opposed to other methods. It also eliminates the sheer-stress conditions that are normally encountered when using 2-D cell culture models.

“We successfully established one chemotherapeutic-sensitive triple negative breast cancer spheroid model and one novel cisplatin-resistant triple negative breast cancer spheroid model. The chemo-sensitive TNBC spheroid model was evaluated for responsiveness against two clinically used chemotherapeutic agents, doxorubicin and cisplatin. We suggest that this model may be useful to screen novel compounds including traditionally used phytomedicinal material for anticancer activity.

“In our second model, the cisplatin-resistant TNBC spheroid model was also exposed to cisplatin and doxorubicin and demonstrated a resistant response in terms of growth and viability. We believe that this model may be useful to further explore drug resistance mechanisms and may also be used as a tool to assess the drug reversal potential of novel compounds. The value and impact of these models lies in that they may offer predictive drug responses that are closer to that observed in in vivo (animals), as opposed to 2-D cell cultures. This however needs to be assessed. We are currently in the process to fully characterise these spheroids models.”

Aim of the research

Dr Abrahams explains their research aims to merge the gap between conventionally used 2-D cell models and in vivo models, by providing a model that is physiologically more accurate in mimicking the in vivo conditions and complex pathways associated with drug resistance, which is otherwise not observed or accurately expressed in 2D models. “Although our research is preclinical and considered fundamental basic research, the translational potential of our spheroid models may provide options for exploring and testing alternative drugs that may be considered for translational research,” Dr Abrahams says.

Characterising other advanced cell-based cancer models

The team is currently in the process of further characterising the TNBC spheroid model based on protein and genetic expression profiles to elucidate potential therapeutic biomarkers for drug treatment as well as screening various phytomedicinal plants, to assess their antiproliferative and drug-resistance reversal potential. In addition, the researchers recently commenced a new research project that aims to develop a drug-resistant prostate cancer spheroid model using the Clinostar™ system with their collaborators at the NWU.

Advanced cell-based model research is still relatively ‘new’ in South Africa and Africa, compared to the global North. As a result, says Dr Abrahams, their NWU collaborators together with other stakeholders, initiated the establishment of the Society for Advanced Cell Culture Modelling for Africa (SACCMA) in 2021, which aims to develop the fields of advanced cell modelling, three-dimensional (3D) cell cultures, 3D bioprinting and stem cell research, in Africa. Our current inter-departmental  collaboration include researchers from the Pharmacology department, but we hope to build and expand our collaboration network in the near future.

News Archive

Community of Qwaqwa gives Prof Petersen a warm Basotho welcome
2017-05-16

 

 Description: Prof Petersen with Basotho hat and blanket Tags: Prof Petersen with Basotho hat and blanket

 Prof Francis Petersen, Vice-Chancellor and Rector of the University of the Free State
Photo: Ian van Straaten

Photo Gallery
Video

Various stakeholders pledged their support to the newly-appointed Vice-Chancellor and Rector of the University of the Free State (UFS), Prof Francis Petersen, during the first in a series of welcoming events that was held at the Qwaqwa Campus on Thursday 11 May 2017.

A message of support and welcome from the Paramount Queen of the Bakoena Royal Council, Mofumahadi Mathokoana Mopeli, took everybody in attendance back three decades to the time when the campus was first established.

“The Qwaqwa Campus of the then University of the North was created to swell this area and the broader Eastern Free State with intellectual capacity,” she said.

“It is with this in mind that we encourage you, Prof Petersen, to continue upholding the best of your predecessors. Search for what they could not achieve and learn from that. Traditional leadership in this area will always be a friend to the university,” she added.

Description: Community of Qwaqwa gives Prof Petersen a warm Basotho welcome Tags: Community of Qwaqwa gives Prof Petersen a warm Basotho welcome

Prof Petersen received a warm Basotho
welcome from Morena Thokoana Mopeli and
Paramount Queen Mofumahadi Mathokoana Mopeli of
the Bakoena Royal Council. With them is
Mrs Cheslyn Petersen.
Photo: Thabo Kessah

The Thabo Mofutsanyana Education District was represented by the Acting District Director, Lindiwe Mabaso, who expressed the district’s pride in being associated with the university.

“Our district is excelling in Mathematics and Science, and this can be attributed to the educators that we get from the Qwaqwa Campus. We are proud to say that we are number one nationally when it comes to Mathematics and Science, and this is through the support we get from the campus. Our schools will continue to be centres of excellence under the new leadership of Prof Petersen,” she said.

Staff and students weigh in

Both Nehawu and Uvpersu expressed their optimism in working with Prof Petersen.

Branch chairperson of Nehawu, Teboho Pitso, said the union appreciated the fact that Prof Petersen was taking over the leadership of the institution at a very difficult time, both institutionally and nationally.

“As workers, we are faced with a lot of challenges and we hope that none of us will be retrenched under your leadership,” he said to an appreciative audience consisting of various internal and external stakeholders.

Acting Chairperson of UVPERSU, Khethiwe Biyo, said the workers’ union was happy that Prof Petersen believed in teamwork.

“Your commitment in working with us is appreciated. We look forward to learning from you about institutional innovation,” she said.

Students were represented by the Qwaqwa Campus SRC President, Njabulo Mwali, who expressed the need for a deeper and detailed transformation process.

“Your expertise and skills have set you above all other aspirant applicants for this position, and we hope that we will learn a lot on this journey,” he said.

“We at the UFS are actively, intentionally,
and continuously engaged in promoting
diversity.”

"Ensure fairness" 

In his response, Prof Petersen emphasised the importance of inclusivity and innovativeness. He said, “Staff and students at the three sites of learning must do all they can to ensure that the UFS realises its goal of being an inclusive institution, one that provides equal access and opportunities to everyone, makes a conscious effort to prevent discrimination, and ensure fairness.”

“Being committed to inclusivity means that we at the UFS are actively, intentionally, and continuously engaged in promoting diversity. This diversity is expressed through our people and through the curriculum, and in the way we work with our communities to promote awareness, empathy, and understanding of the complex ways individuals interact. As you know, our ultimate goal as a university is not only to educate young people up to the point that they graduate. What they learn during their time with us should help shape them into people who can think innovatively in order to address the challenges that face us in the 21st century,” he said.

The Qwaqwa Campus Chorale and the award-winning choir from The Beacon Secondary School in Phuthaditjhaba provided the entertainment.

Similar events will respectively be hosted on the South and Bloemfontein Campuses on 18 and 19 May 2017.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept