Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 December 2024 | Story André Damons | Photo André Damons
Breast Cancer Research 2024
The research team consist of Dr Beynon Abrahams (left), Viwe Fokazi, MMed.Sci student, and PhD student Songezo Vazi.

In an effort to better understand chemotherapeutic treatment response in triple negative breast cancer (TNBC) – known as an aggressive cancer with high recurrence and high mortality rate in breast cancer patients – researchers from the University of the Free State (UFS) developed a drug-resistant TNBC spheroid model that is physiologically more accurate in displaying the complexities involved in drug-resistance development.

Dr Beynon Abrahams, Lecturer in the Department of Basic Medical Sciences within the UFS Faculty of Health Sciences, says breast cancer remains the most frequently diagnosed cancer in women. It is also the most debilitating type of cancer responsible for the highest cancer mortality rates in women. Though various subtypes of breast cancer exist, TNBC is one that is of particular interest to his research team.

“TNBC is one of the most difficult cancer types to treat, due to lack of treatment targets. This often leads to treatment failure in TNBC patients, with drug resistance being a common occurrence, contributing to high death rates. TNBC is classified based on its lack of expression of common receptors such as the estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2, which are commonly expressed in other cancer subtypes.

“Characteristically, TNBC is known as an aggressive cancer with high metastatic potential (spreading of cancer), resulting in a poor prognosis for these patients. The current prescribed therapies for TNBC, entails multidrug combination systemic therapy including chemotherapeutic agents such as doxorubicin and cisplatin as adjuvant therapy. However, despite these therapeutic interventions, drug resistance is a common occurrence,” says Dr Abrahams.

The best available preclinical cell-based models should be used

For effective drug treatments to be developed for TNBC therapeutics, he continues, the best available disease models should be used to not only improve our understanding of the disease physiology and its numerous mechanisms involved in chemotherapeutic resistance development but also to provide accurate results when determining how safe and effective newly developed drugs are, before they may be considered for further development and testing on humans.

According to him, in preclinical cancer research the conventional methods employed to study disease mechanisms, drug action and drug resistance is ineffective. Firstly, the traditionally used preclinical 2-dimensional (2-D) cell culture models do not accurately recapitulate the architectural biology observed in vivo, second, the drug responses assessed in these models may provide inaccurate results and limit its translational potential, explains Dr Abrahams. Thus, more advanced cell-based models such as 3-dimensional (3-D) spheroids and organoids to name a few, should be considered as alternatives.

The UFS research team, in collaboration with the Centre of Excellence for Pharmaceutical Sciences (Pharmacen™) at the North-West University (NWU), recently took the undertaking to establish two triple negative breast cancer 3-D spheroid models, using the clinostat rotating bioreactor ClinoStar™ system, designed by CelVivo in Denmark. The project is funded by the National Research Foundation.

The ClinoStar™ system promotes the self-aggregation of single cells, and natural formation of 3-D spheroids, through slow rotation within a cell growth chamber known as an incubator. There are various techniques and methods available to develop spheroids and organoids, however the ClinoStar™ systems allow for the development of metabolically stable spheroids, over a longer period of time, as opposed to other methods. It also eliminates the sheer-stress conditions that are normally encountered when using 2-D cell culture models.

“We successfully established one chemotherapeutic-sensitive triple negative breast cancer spheroid model and one novel cisplatin-resistant triple negative breast cancer spheroid model. The chemo-sensitive TNBC spheroid model was evaluated for responsiveness against two clinically used chemotherapeutic agents, doxorubicin and cisplatin. We suggest that this model may be useful to screen novel compounds including traditionally used phytomedicinal material for anticancer activity.

“In our second model, the cisplatin-resistant TNBC spheroid model was also exposed to cisplatin and doxorubicin and demonstrated a resistant response in terms of growth and viability. We believe that this model may be useful to further explore drug resistance mechanisms and may also be used as a tool to assess the drug reversal potential of novel compounds. The value and impact of these models lies in that they may offer predictive drug responses that are closer to that observed in in vivo (animals), as opposed to 2-D cell cultures. This however needs to be assessed. We are currently in the process to fully characterise these spheroids models.”

Aim of the research

Dr Abrahams explains their research aims to merge the gap between conventionally used 2-D cell models and in vivo models, by providing a model that is physiologically more accurate in mimicking the in vivo conditions and complex pathways associated with drug resistance, which is otherwise not observed or accurately expressed in 2D models. “Although our research is preclinical and considered fundamental basic research, the translational potential of our spheroid models may provide options for exploring and testing alternative drugs that may be considered for translational research,” Dr Abrahams says.

Characterising other advanced cell-based cancer models

The team is currently in the process of further characterising the TNBC spheroid model based on protein and genetic expression profiles to elucidate potential therapeutic biomarkers for drug treatment as well as screening various phytomedicinal plants, to assess their antiproliferative and drug-resistance reversal potential. In addition, the researchers recently commenced a new research project that aims to develop a drug-resistant prostate cancer spheroid model using the Clinostar™ system with their collaborators at the NWU.

Advanced cell-based model research is still relatively ‘new’ in South Africa and Africa, compared to the global North. As a result, says Dr Abrahams, their NWU collaborators together with other stakeholders, initiated the establishment of the Society for Advanced Cell Culture Modelling for Africa (SACCMA) in 2021, which aims to develop the fields of advanced cell modelling, three-dimensional (3D) cell cultures, 3D bioprinting and stem cell research, in Africa. Our current inter-departmental  collaboration include researchers from the Pharmacology department, but we hope to build and expand our collaboration network in the near future.

News Archive

Department of English changed to empower students
2017-07-05

Description:Department of English  Tags: Department of English

Lecturers from the Department of English at the University of the Free State have been working
hard to create a robust learning environment for students through continuous assessment.
Photo: Sonia Small


A new curriculum, exciting third-year seminars, and a transition to continuous assessment. These are some of the changes made by the Department of English at the University of the Free State (UFS) over the past few years. The department, which also boasts four National Research Foundation (NRF) researchers, did this to tailor the curriculum towards the needs of its students and to foster a better culture of engagement.

According to Prof Helene Strauss, Head of the Department, the advantages of these changes are clear. “Staff have noted a significant improvement in both the basic writing and critical deliberation skills of our students, and in the responsibility they are taking for their own learning.” The new curriculum empowers students to take a position in relation to the knowledge they encounter in the classroom, thereby strengthening their own critical voice.

Taking continuous responsibility

One of the most significant changes for students was the fact that they have to take responsibility all the time. Prof Strauss says continuous assessment changed “last-minute cramming to near-daily, student-centred activities of reading, writing, and critical discovery.”

Because students have to prepare for lectures and reflect on materials, they are in a better position to internalise difficult debates and critical concepts. “Rather than telling students what to think, we help them develop flexible, critical tools to make sense of a changing world.”

Third-year seminars are another way of including forms of instruction that concentrate on the links between education and democracy, but still improve students’ ability to speak and write English accurately. Every semester, students can choose seminars from a range of topics such as ‘Witchcraft’ (Prof Margaret Raftery) and ‘The Art of Dying’ (Dr Mariza Brooks).

Research and associates around the world

Dr Marthinus Conradie, Dr Rodwell Makombe, Prof Irikidzayi Manase, and Prof Strauss are all NRF-rated researchers in the department.

The department also has affiliated research associates from countries including Zimbabwe, the USA, and Canada. Dr Kudzayi Ngara currently holds a competitive NRF grant for a project on Southern African urbanity, and Dr Philip Aghoghovwia recently received the prestigious African Humanities Programme Fellowship.

Under the guidance of Dr Ngara, the department has been able to roll out a new Honours programme on the Qwaqwa Campus. The campus now also offers students the opportunity to pursue MA and PhD studies.

Other highlights:
• Hosted the international Institute of the Association for Cultural Studies in 2015.
• Books published: Dr Susan Brokensha (with Burgert Senekal). Surfers van die Tsunami: Navorsing en Inligtingstegnologie binne die Geesteswetenskappe (SUN MeDIA, 2014); Prof Iri Manase. White Narratives: The depiction of post-2000 land invasions in Zimbabwe (UNISA Press, 2016); as well as co-edited volumes with Cambridge Scholars Publishing (Dr Oliver Nyambi) and Routledge (Prof Helene Strauss).
• Publications include three special journal issues (of ISI journals Critical Arts: South-North Cultural and Media Studies; Safundi: The Journal of South African and American Studies; Interventions: International Journal of Postcolonial Studies).

 



We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept