Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 December 2024 | Story André Damons | Photo André Damons
Breast Cancer Research 2024
The research team consist of Dr Beynon Abrahams (left), Viwe Fokazi, MMed.Sci student, and PhD student Songezo Vazi.

In an effort to better understand chemotherapeutic treatment response in triple negative breast cancer (TNBC) – known as an aggressive cancer with high recurrence and high mortality rate in breast cancer patients – researchers from the University of the Free State (UFS) developed a drug-resistant TNBC spheroid model that is physiologically more accurate in displaying the complexities involved in drug-resistance development.

Dr Beynon Abrahams, Lecturer in the Department of Basic Medical Sciences within the UFS Faculty of Health Sciences, says breast cancer remains the most frequently diagnosed cancer in women. It is also the most debilitating type of cancer responsible for the highest cancer mortality rates in women. Though various subtypes of breast cancer exist, TNBC is one that is of particular interest to his research team.

“TNBC is one of the most difficult cancer types to treat, due to lack of treatment targets. This often leads to treatment failure in TNBC patients, with drug resistance being a common occurrence, contributing to high death rates. TNBC is classified based on its lack of expression of common receptors such as the estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2, which are commonly expressed in other cancer subtypes.

“Characteristically, TNBC is known as an aggressive cancer with high metastatic potential (spreading of cancer), resulting in a poor prognosis for these patients. The current prescribed therapies for TNBC, entails multidrug combination systemic therapy including chemotherapeutic agents such as doxorubicin and cisplatin as adjuvant therapy. However, despite these therapeutic interventions, drug resistance is a common occurrence,” says Dr Abrahams.

The best available preclinical cell-based models should be used

For effective drug treatments to be developed for TNBC therapeutics, he continues, the best available disease models should be used to not only improve our understanding of the disease physiology and its numerous mechanisms involved in chemotherapeutic resistance development but also to provide accurate results when determining how safe and effective newly developed drugs are, before they may be considered for further development and testing on humans.

According to him, in preclinical cancer research the conventional methods employed to study disease mechanisms, drug action and drug resistance is ineffective. Firstly, the traditionally used preclinical 2-dimensional (2-D) cell culture models do not accurately recapitulate the architectural biology observed in vivo, second, the drug responses assessed in these models may provide inaccurate results and limit its translational potential, explains Dr Abrahams. Thus, more advanced cell-based models such as 3-dimensional (3-D) spheroids and organoids to name a few, should be considered as alternatives.

The UFS research team, in collaboration with the Centre of Excellence for Pharmaceutical Sciences (Pharmacen™) at the North-West University (NWU), recently took the undertaking to establish two triple negative breast cancer 3-D spheroid models, using the clinostat rotating bioreactor ClinoStar™ system, designed by CelVivo in Denmark. The project is funded by the National Research Foundation.

The ClinoStar™ system promotes the self-aggregation of single cells, and natural formation of 3-D spheroids, through slow rotation within a cell growth chamber known as an incubator. There are various techniques and methods available to develop spheroids and organoids, however the ClinoStar™ systems allow for the development of metabolically stable spheroids, over a longer period of time, as opposed to other methods. It also eliminates the sheer-stress conditions that are normally encountered when using 2-D cell culture models.

“We successfully established one chemotherapeutic-sensitive triple negative breast cancer spheroid model and one novel cisplatin-resistant triple negative breast cancer spheroid model. The chemo-sensitive TNBC spheroid model was evaluated for responsiveness against two clinically used chemotherapeutic agents, doxorubicin and cisplatin. We suggest that this model may be useful to screen novel compounds including traditionally used phytomedicinal material for anticancer activity.

“In our second model, the cisplatin-resistant TNBC spheroid model was also exposed to cisplatin and doxorubicin and demonstrated a resistant response in terms of growth and viability. We believe that this model may be useful to further explore drug resistance mechanisms and may also be used as a tool to assess the drug reversal potential of novel compounds. The value and impact of these models lies in that they may offer predictive drug responses that are closer to that observed in in vivo (animals), as opposed to 2-D cell cultures. This however needs to be assessed. We are currently in the process to fully characterise these spheroids models.”

Aim of the research

Dr Abrahams explains their research aims to merge the gap between conventionally used 2-D cell models and in vivo models, by providing a model that is physiologically more accurate in mimicking the in vivo conditions and complex pathways associated with drug resistance, which is otherwise not observed or accurately expressed in 2D models. “Although our research is preclinical and considered fundamental basic research, the translational potential of our spheroid models may provide options for exploring and testing alternative drugs that may be considered for translational research,” Dr Abrahams says.

Characterising other advanced cell-based cancer models

The team is currently in the process of further characterising the TNBC spheroid model based on protein and genetic expression profiles to elucidate potential therapeutic biomarkers for drug treatment as well as screening various phytomedicinal plants, to assess their antiproliferative and drug-resistance reversal potential. In addition, the researchers recently commenced a new research project that aims to develop a drug-resistant prostate cancer spheroid model using the Clinostar™ system with their collaborators at the NWU.

Advanced cell-based model research is still relatively ‘new’ in South Africa and Africa, compared to the global North. As a result, says Dr Abrahams, their NWU collaborators together with other stakeholders, initiated the establishment of the Society for Advanced Cell Culture Modelling for Africa (SACCMA) in 2021, which aims to develop the fields of advanced cell modelling, three-dimensional (3D) cell cultures, 3D bioprinting and stem cell research, in Africa. Our current inter-departmental  collaboration include researchers from the Pharmacology department, but we hope to build and expand our collaboration network in the near future.

News Archive

Significant support for Student Safety March in Bloemfontein
2017-07-28

 Description: Student Safety March Prof Petersen Tags: Student Safety March Prof Petersen 

SK Luwaca, UFS SRC President; Thapelo Ngozo,
CUT SRC President, and Prof Francis Petersen,
UFS Rector and Vice-Chancellor, during the handover of the
memorandum at the Bram Fischer Building.
Photo: Johan Roux

The University of the Free State (UFS) and the Central University of Technology (CUT) united in a Student Safety Awareness March, which took place on Thursday 27 July 2017 from the UFS Bloemfontein Campus to the Bram Fischer Building.

The peaceful march had a turnout of approximately 1 500 students and staff from both institutions, led by the Student Representative Councils (SRC) from UFS and CUT. The purpose of the march was to hand over a memorandum to the Provincial Commissioner, Lieutenant General Lebeoana Tsumane, who acknowledged it on behalf of Mr Sam Mashinini, MEC for Police, Roads, and Transport in the Free State. The memorandum includes students’ demands regarding safety around student residential areas and general student safety in the city.

Prof Francis Petersen, UFS Rector and Vice-Chancellor, who – together with other members of the senior leadership group – was part of the march, says he is very impressed with the outcome of the march and the participation rate of both staff and students, as well as the joint efforts between the UFS and CUT to arrange the march.

Prof Petersen says, “There are public spaces where our students feel unsafe, and we would like the city and the province to seriously look into that and work with us to try and see if we could make those spaces safe.

A week filled with safety activities
The march was part of the Safety Week taking place from 24 to 28 July 2017, during which the UFS SRC, together with other stakeholders, took part in several activities on and off the Bloemfontein Campus. These included door-to-door visits to student homes and residences on and around campus, awareness campaigns at all the gates of the campus, and a Safety Dialogue held on 26 July 2017 at the Equitas Auditorium on campus.

The aim of the Safety Week was to focus on informing, educating, and encouraging students as well as the Mangaung community at large, to work together in creating a safe environment for students. The week started with the roll-out of an awareness campaign titled Reach Out, which was set to bring students and the community of Mangaung together to help decrease the number of violent crimes faced by students off campus. The communication plan included safety messages, using outdoor billboards, posters on lampposts around the residential student areas, local community radio stations, campus media, and the university’s social media platforms.

 Description: Student Safety March  Tags: Student Safety March  

UFS and CUT students and staff, occupying the streets of
Bloemfontein during the Safety March.
Photo: Johan Roux

Accreditation of off-campus accommodation service providers
Over and above the Safety Week and safety awareness march, the university has initiated a number of other projects as part of its student safety strategy. This includes a process to accredit off-campus accommodation service providers in Bloemfontein who provide accommodation to students. The decision to accredit these service providers comes from a concern by the university management about the safety of students and the conditions under which some of our students live in off-campus accommodation. The accreditation process entails a list of primary requirements, drafted with the cognisance of the Mangaung Metropolitan Municipality and the SRC, in terms of off-campus accommodation to which private providers must adhere in order to be accredited by the university. The requirements are in line with the Policy on the Minimum Norms and Standards for Student Housing at Public Universities (Government Gazette 39238, dated 29 September 2015).

Transport to and from campus
Another project to be initiated on 31 July 2017 is a transport pilot project with Interstate Bus Lines to assist students with transport and access to the Bloemfontein Campus. The route includes various stops in the areas surrounding the campus, as well as a hop-on/hop-off route within the campus.


Released by:

Lacea Loader (Director: Communication and Brand Management)
Telephone: +27 51 401 2584 | +27 83 645 2454
Email: news@ufs.ac.za | loaderl@ufs.ac.za
Fax: +27 51 444 6393


 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept