Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 December 2024 | Story André Damons | Photo André Damons
Breast Cancer Research 2024
The research team consist of Dr Beynon Abrahams (left), Viwe Fokazi, MMed.Sci student, and PhD student Songezo Vazi.

In an effort to better understand chemotherapeutic treatment response in triple negative breast cancer (TNBC) – known as an aggressive cancer with high recurrence and high mortality rate in breast cancer patients – researchers from the University of the Free State (UFS) developed a drug-resistant TNBC spheroid model that is physiologically more accurate in displaying the complexities involved in drug-resistance development.

Dr Beynon Abrahams, Lecturer in the Department of Basic Medical Sciences within the UFS Faculty of Health Sciences, says breast cancer remains the most frequently diagnosed cancer in women. It is also the most debilitating type of cancer responsible for the highest cancer mortality rates in women. Though various subtypes of breast cancer exist, TNBC is one that is of particular interest to his research team.

“TNBC is one of the most difficult cancer types to treat, due to lack of treatment targets. This often leads to treatment failure in TNBC patients, with drug resistance being a common occurrence, contributing to high death rates. TNBC is classified based on its lack of expression of common receptors such as the estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2, which are commonly expressed in other cancer subtypes.

“Characteristically, TNBC is known as an aggressive cancer with high metastatic potential (spreading of cancer), resulting in a poor prognosis for these patients. The current prescribed therapies for TNBC, entails multidrug combination systemic therapy including chemotherapeutic agents such as doxorubicin and cisplatin as adjuvant therapy. However, despite these therapeutic interventions, drug resistance is a common occurrence,” says Dr Abrahams.

The best available preclinical cell-based models should be used

For effective drug treatments to be developed for TNBC therapeutics, he continues, the best available disease models should be used to not only improve our understanding of the disease physiology and its numerous mechanisms involved in chemotherapeutic resistance development but also to provide accurate results when determining how safe and effective newly developed drugs are, before they may be considered for further development and testing on humans.

According to him, in preclinical cancer research the conventional methods employed to study disease mechanisms, drug action and drug resistance is ineffective. Firstly, the traditionally used preclinical 2-dimensional (2-D) cell culture models do not accurately recapitulate the architectural biology observed in vivo, second, the drug responses assessed in these models may provide inaccurate results and limit its translational potential, explains Dr Abrahams. Thus, more advanced cell-based models such as 3-dimensional (3-D) spheroids and organoids to name a few, should be considered as alternatives.

The UFS research team, in collaboration with the Centre of Excellence for Pharmaceutical Sciences (Pharmacen™) at the North-West University (NWU), recently took the undertaking to establish two triple negative breast cancer 3-D spheroid models, using the clinostat rotating bioreactor ClinoStar™ system, designed by CelVivo in Denmark. The project is funded by the National Research Foundation.

The ClinoStar™ system promotes the self-aggregation of single cells, and natural formation of 3-D spheroids, through slow rotation within a cell growth chamber known as an incubator. There are various techniques and methods available to develop spheroids and organoids, however the ClinoStar™ systems allow for the development of metabolically stable spheroids, over a longer period of time, as opposed to other methods. It also eliminates the sheer-stress conditions that are normally encountered when using 2-D cell culture models.

“We successfully established one chemotherapeutic-sensitive triple negative breast cancer spheroid model and one novel cisplatin-resistant triple negative breast cancer spheroid model. The chemo-sensitive TNBC spheroid model was evaluated for responsiveness against two clinically used chemotherapeutic agents, doxorubicin and cisplatin. We suggest that this model may be useful to screen novel compounds including traditionally used phytomedicinal material for anticancer activity.

“In our second model, the cisplatin-resistant TNBC spheroid model was also exposed to cisplatin and doxorubicin and demonstrated a resistant response in terms of growth and viability. We believe that this model may be useful to further explore drug resistance mechanisms and may also be used as a tool to assess the drug reversal potential of novel compounds. The value and impact of these models lies in that they may offer predictive drug responses that are closer to that observed in in vivo (animals), as opposed to 2-D cell cultures. This however needs to be assessed. We are currently in the process to fully characterise these spheroids models.”

Aim of the research

Dr Abrahams explains their research aims to merge the gap between conventionally used 2-D cell models and in vivo models, by providing a model that is physiologically more accurate in mimicking the in vivo conditions and complex pathways associated with drug resistance, which is otherwise not observed or accurately expressed in 2D models. “Although our research is preclinical and considered fundamental basic research, the translational potential of our spheroid models may provide options for exploring and testing alternative drugs that may be considered for translational research,” Dr Abrahams says.

Characterising other advanced cell-based cancer models

The team is currently in the process of further characterising the TNBC spheroid model based on protein and genetic expression profiles to elucidate potential therapeutic biomarkers for drug treatment as well as screening various phytomedicinal plants, to assess their antiproliferative and drug-resistance reversal potential. In addition, the researchers recently commenced a new research project that aims to develop a drug-resistant prostate cancer spheroid model using the Clinostar™ system with their collaborators at the NWU.

Advanced cell-based model research is still relatively ‘new’ in South Africa and Africa, compared to the global North. As a result, says Dr Abrahams, their NWU collaborators together with other stakeholders, initiated the establishment of the Society for Advanced Cell Culture Modelling for Africa (SACCMA) in 2021, which aims to develop the fields of advanced cell modelling, three-dimensional (3D) cell cultures, 3D bioprinting and stem cell research, in Africa. Our current inter-departmental  collaboration include researchers from the Pharmacology department, but we hope to build and expand our collaboration network in the near future.

News Archive

2010 World Cup: An opportunity for nation-building
2010-05-11

Pictured from the left, front are: Prof. Labuschagne and Prof. Cornelissen. Back: Prof. Kersting, Prof. Teuns Verschoor (Acting Senior Vice-Rector: UFS) and Dr Ralf Hermann (DAAD).
Photo: Mangaliso Radebe

“The 2010 FIFA World Cup creates a window of opportunity for nation-building in South Africa that could even surpass the opportunity created by the 1995 Rugby World Cup.”

This was according to Prof. Pieter Labuschagne from the University of South Africa, who was one of the three speakers during the lecture series on soccer that were recently presented by the Faculty of the Humanities at the University of the Free State (UFS), in conjunction with the German Academic Exchange Service (DAAD), under the theme: Soccer and Nation Building.

Prof. Labuschagne delivered a paper on the topic, The 2010 Soccer World Cup in South Africa: Nation Building or White Apathy?, highlighting the critical issue of how sport in South Africa was still largely supported along racial lines.

“We are still enforcing the separateness of rugby as a sport for whites and soccer as a sport for blacks,” he said.

He said a high degree of animosity against soccer existed among whites because they felt rugby and cricket were being singled out by parliament as far as transformation was concerned. He said that could be the reason why a large number of South African whites still supported soccer teams from foreign countries instead of local Premier Soccer League teams.

“Bridging social context between different racial groups is still a major problem, even though patriotism is comparatively high in South Africa,” added Prof. Norbert Kersting from the University of Stellenbosch, who also presented a paper on World Cup 2010 and nation building from Germany to South Africa, drawing critical comparisons on issues of national pride and identity between the 2006 World Cup in Germany and the 2010 World Cup.

“Strong leadership is needed to utilize the opportunity provided by the 2010 World Cup to build national unity as former President Nelson Mandela did with the Rugby World Cup in 1995,” said Prof. Labuschagne.

Although acknowledging the power of sport as a unifying force, Prof. Scarlett Cornelissen, also from the University of Stellenbosch, said that, since 1995, the captivating power of sport had been used to achieve political aims and that the 2010 World Cup was no different.

Amongst the reasons she advanced for her argument were that the 2010 World Cup was meant to show the world that South Africa was a capable country; that the World Cup was meant to solidify South Africa’s “African Agenda” – the African Renaissance - and also to extend the idea of the Rainbow Nation; consolidate democracy; contribute to socio-economic development and legitimize the state.

“We should not place too much emphasis on the 2010 World Cup as a nation-building instrument,” she concluded.

She presented a paper on the topic Transforming the Nation? The political legacies of the 2010 FIFA World Cup.

The aim of the lecture series was to inspire public debate on the social and cultural dimensions of soccer.

DAAD (Deutscher Akademischer Austausch Dienst) is one of the world’s largest and most respected intermediary organisations in the field of international academic cooperation.
Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
11 May 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept