Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 December 2024 | Story André Damons | Photo André Damons
Breast Cancer Research 2024
The research team consist of Dr Beynon Abrahams (left), Viwe Fokazi, MMed.Sci student, and PhD student Songezo Vazi.

In an effort to better understand chemotherapeutic treatment response in triple negative breast cancer (TNBC) – known as an aggressive cancer with high recurrence and high mortality rate in breast cancer patients – researchers from the University of the Free State (UFS) developed a drug-resistant TNBC spheroid model that is physiologically more accurate in displaying the complexities involved in drug-resistance development.

Dr Beynon Abrahams, Lecturer in the Department of Basic Medical Sciences within the UFS Faculty of Health Sciences, says breast cancer remains the most frequently diagnosed cancer in women. It is also the most debilitating type of cancer responsible for the highest cancer mortality rates in women. Though various subtypes of breast cancer exist, TNBC is one that is of particular interest to his research team.

“TNBC is one of the most difficult cancer types to treat, due to lack of treatment targets. This often leads to treatment failure in TNBC patients, with drug resistance being a common occurrence, contributing to high death rates. TNBC is classified based on its lack of expression of common receptors such as the estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2, which are commonly expressed in other cancer subtypes.

“Characteristically, TNBC is known as an aggressive cancer with high metastatic potential (spreading of cancer), resulting in a poor prognosis for these patients. The current prescribed therapies for TNBC, entails multidrug combination systemic therapy including chemotherapeutic agents such as doxorubicin and cisplatin as adjuvant therapy. However, despite these therapeutic interventions, drug resistance is a common occurrence,” says Dr Abrahams.

The best available preclinical cell-based models should be used

For effective drug treatments to be developed for TNBC therapeutics, he continues, the best available disease models should be used to not only improve our understanding of the disease physiology and its numerous mechanisms involved in chemotherapeutic resistance development but also to provide accurate results when determining how safe and effective newly developed drugs are, before they may be considered for further development and testing on humans.

According to him, in preclinical cancer research the conventional methods employed to study disease mechanisms, drug action and drug resistance is ineffective. Firstly, the traditionally used preclinical 2-dimensional (2-D) cell culture models do not accurately recapitulate the architectural biology observed in vivo, second, the drug responses assessed in these models may provide inaccurate results and limit its translational potential, explains Dr Abrahams. Thus, more advanced cell-based models such as 3-dimensional (3-D) spheroids and organoids to name a few, should be considered as alternatives.

The UFS research team, in collaboration with the Centre of Excellence for Pharmaceutical Sciences (Pharmacen™) at the North-West University (NWU), recently took the undertaking to establish two triple negative breast cancer 3-D spheroid models, using the clinostat rotating bioreactor ClinoStar™ system, designed by CelVivo in Denmark. The project is funded by the National Research Foundation.

The ClinoStar™ system promotes the self-aggregation of single cells, and natural formation of 3-D spheroids, through slow rotation within a cell growth chamber known as an incubator. There are various techniques and methods available to develop spheroids and organoids, however the ClinoStar™ systems allow for the development of metabolically stable spheroids, over a longer period of time, as opposed to other methods. It also eliminates the sheer-stress conditions that are normally encountered when using 2-D cell culture models.

“We successfully established one chemotherapeutic-sensitive triple negative breast cancer spheroid model and one novel cisplatin-resistant triple negative breast cancer spheroid model. The chemo-sensitive TNBC spheroid model was evaluated for responsiveness against two clinically used chemotherapeutic agents, doxorubicin and cisplatin. We suggest that this model may be useful to screen novel compounds including traditionally used phytomedicinal material for anticancer activity.

“In our second model, the cisplatin-resistant TNBC spheroid model was also exposed to cisplatin and doxorubicin and demonstrated a resistant response in terms of growth and viability. We believe that this model may be useful to further explore drug resistance mechanisms and may also be used as a tool to assess the drug reversal potential of novel compounds. The value and impact of these models lies in that they may offer predictive drug responses that are closer to that observed in in vivo (animals), as opposed to 2-D cell cultures. This however needs to be assessed. We are currently in the process to fully characterise these spheroids models.”

Aim of the research

Dr Abrahams explains their research aims to merge the gap between conventionally used 2-D cell models and in vivo models, by providing a model that is physiologically more accurate in mimicking the in vivo conditions and complex pathways associated with drug resistance, which is otherwise not observed or accurately expressed in 2D models. “Although our research is preclinical and considered fundamental basic research, the translational potential of our spheroid models may provide options for exploring and testing alternative drugs that may be considered for translational research,” Dr Abrahams says.

Characterising other advanced cell-based cancer models

The team is currently in the process of further characterising the TNBC spheroid model based on protein and genetic expression profiles to elucidate potential therapeutic biomarkers for drug treatment as well as screening various phytomedicinal plants, to assess their antiproliferative and drug-resistance reversal potential. In addition, the researchers recently commenced a new research project that aims to develop a drug-resistant prostate cancer spheroid model using the Clinostar™ system with their collaborators at the NWU.

Advanced cell-based model research is still relatively ‘new’ in South Africa and Africa, compared to the global North. As a result, says Dr Abrahams, their NWU collaborators together with other stakeholders, initiated the establishment of the Society for Advanced Cell Culture Modelling for Africa (SACCMA) in 2021, which aims to develop the fields of advanced cell modelling, three-dimensional (3D) cell cultures, 3D bioprinting and stem cell research, in Africa. Our current inter-departmental  collaboration include researchers from the Pharmacology department, but we hope to build and expand our collaboration network in the near future.

News Archive

Premiere of the documentary on King Moshoeshoe - Address by the Rector
2004-10-14

Address by the rector and vice-chancellor of the University of the Free State, prof Frederick Fourie, at the premiere of the documentary on King Moshoeshoe, Wednesday 13 October 2004

It is indeed a privilege to welcome you at this key event in the Centenary celebrations of the University of the Free State.

We are simultaneously celebrating 100 years of scholarship with 10 years of democracy

Today is a very important day with great significance for the University. This Centenary is not merely a celebration of an institution of a certain age. It is a key event in this particular phase of our history, in our transformation as an institution of higher learning, in taking the creation of a high-quality, equitable, non-racial, non-sexist, multicultural and multilingual university seriously.

This is about building something new out of the old, of creating new institutional cultures and values from diverse traditions.

It is about learning together - as an higher education institution - about who we are where we come from – to decide where we are going.

It is about merging the age-old tradition of the university, of the academic gown, with the Basotho blanket, the symbol of community engagement.

Then why is it important that we remember Moshoeshoe, where does he fit into our history?

In the Free State province, where large numbers of Basotho and Afrikaners (and others) now live together, a new post-apartheid society is being built in the 21st century.

The challenge is similar to that faced by Moshoeshoe 150 years ago. As you will see tonight, he did a remarkable thing in forging a new nation out of a fragmented society. He also created a remarkable spirit of reconciliation and a remarkable style of leadership.

Not all people in South Africa know the history of Moshoeshoe. Many Basotho – but not all – are well versed in the history of Moshoeshoe, and his name is honoured in many a street, town and township. Many white people know very little of him, or have a very constrained or even biased view of his role and legacy. In Africa and the world, he his much less known than, for instance, Shaka. (In Lesotho, obviously, he is widely recognised and praised.)

We already benefit from his legacy: the people of the Free State share a tradition of moderation and reconciliation rather than one of aggression and domination.

With Moshoeshoe, together with Afrikaner leaders and reconciliators such as President MT Steyn and Christiaan de Wet, we have much to be thankful for.

Our challenge is take this legacy further: to forge a new society in which different cultural, language and racial groups – Basotho, Afrikaners and others – will all feel truly at home.

Bit by bit, on school grounds, on university campuses, in each town and city, people must shape the values and principles that will mould this new non-racial, multicultural and multilingual society.

A shared sense of history, shared stories and shared heroes are important elements in such a process.

Through this documentary film about King Moshoeshoe, the UFS commits itself to developing a shared appreciation of the history of this country and to the establishment of the Free State Province as a model of reconciliation and nation-building.

Moshoeshoe is also a strong common element, and binding factor, in the relationship between South Africa / the Free State, and its neighbour, Lesotho.

For the University of the Free State this also is an integral part of real transformation – of creating a new unity amidst our diversity.

Transformation has so many aspects: whilst the composition of our student and staff populations have been changing, many other things change at the same time: new curricula, new research, new community service learning projects.

In also includes creation of new values, new (shared) histories, new (shared) heroes.

It includes the incorporation of the Qwaqwa campus, which serves a region where so many of the children of Moshoeshoe live, including her majesty Queen Mopeli.

We see in Moshoeshoe a model of African leadership – of reconciliation and nation-building – that can have a significant impact in South Africa and Africa as a whole.

We also find in the legacy of King Moshoeshoe the possibility of an “founding philosophy”, or “defining philosophy”, for the African renaissance.

To develop this philosophy, we must gain a deeper understanding of what really happened there, of his role, of his leadership.

Therefore the University of the Free State will encourage and support further research into the history, politics and sociology of the Moshoeshoe period, including his leadership style.

We hope to do this in partnership with National University of Lesotho.

The Moshoeshoe documentary is one element of a long-term project of the UFS. The other elements of the project that we are investigating are possible PhD-level research; a possible annual Moshoeshoe memorial lecture on African leadership; and then possible schools projects and other ways and symbols of honouring him.

It is my sincere wish that all communities of the Free State and of South Africa will be able to identify with the central themes of this documentary, and develop a shared appreciation for leaders such as King Moshoeshoe and the legacy of peace, reconciliation and nation-building that they have left us.

Prof. Frederick Fourie
Rector and Vice-Chancellor
University of the Free State
13 October 2004.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept