Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 December 2024 | Story André Damons | Photo André Damons
Breast Cancer Research 2024
The research team consist of Dr Beynon Abrahams (left), Viwe Fokazi, MMed.Sci student, and PhD student Songezo Vazi.

In an effort to better understand chemotherapeutic treatment response in triple negative breast cancer (TNBC) – known as an aggressive cancer with high recurrence and high mortality rate in breast cancer patients – researchers from the University of the Free State (UFS) developed a drug-resistant TNBC spheroid model that is physiologically more accurate in displaying the complexities involved in drug-resistance development.

Dr Beynon Abrahams, Lecturer in the Department of Basic Medical Sciences within the UFS Faculty of Health Sciences, says breast cancer remains the most frequently diagnosed cancer in women. It is also the most debilitating type of cancer responsible for the highest cancer mortality rates in women. Though various subtypes of breast cancer exist, TNBC is one that is of particular interest to his research team.

“TNBC is one of the most difficult cancer types to treat, due to lack of treatment targets. This often leads to treatment failure in TNBC patients, with drug resistance being a common occurrence, contributing to high death rates. TNBC is classified based on its lack of expression of common receptors such as the estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2, which are commonly expressed in other cancer subtypes.

“Characteristically, TNBC is known as an aggressive cancer with high metastatic potential (spreading of cancer), resulting in a poor prognosis for these patients. The current prescribed therapies for TNBC, entails multidrug combination systemic therapy including chemotherapeutic agents such as doxorubicin and cisplatin as adjuvant therapy. However, despite these therapeutic interventions, drug resistance is a common occurrence,” says Dr Abrahams.

The best available preclinical cell-based models should be used

For effective drug treatments to be developed for TNBC therapeutics, he continues, the best available disease models should be used to not only improve our understanding of the disease physiology and its numerous mechanisms involved in chemotherapeutic resistance development but also to provide accurate results when determining how safe and effective newly developed drugs are, before they may be considered for further development and testing on humans.

According to him, in preclinical cancer research the conventional methods employed to study disease mechanisms, drug action and drug resistance is ineffective. Firstly, the traditionally used preclinical 2-dimensional (2-D) cell culture models do not accurately recapitulate the architectural biology observed in vivo, second, the drug responses assessed in these models may provide inaccurate results and limit its translational potential, explains Dr Abrahams. Thus, more advanced cell-based models such as 3-dimensional (3-D) spheroids and organoids to name a few, should be considered as alternatives.

The UFS research team, in collaboration with the Centre of Excellence for Pharmaceutical Sciences (Pharmacen™) at the North-West University (NWU), recently took the undertaking to establish two triple negative breast cancer 3-D spheroid models, using the clinostat rotating bioreactor ClinoStar™ system, designed by CelVivo in Denmark. The project is funded by the National Research Foundation.

The ClinoStar™ system promotes the self-aggregation of single cells, and natural formation of 3-D spheroids, through slow rotation within a cell growth chamber known as an incubator. There are various techniques and methods available to develop spheroids and organoids, however the ClinoStar™ systems allow for the development of metabolically stable spheroids, over a longer period of time, as opposed to other methods. It also eliminates the sheer-stress conditions that are normally encountered when using 2-D cell culture models.

“We successfully established one chemotherapeutic-sensitive triple negative breast cancer spheroid model and one novel cisplatin-resistant triple negative breast cancer spheroid model. The chemo-sensitive TNBC spheroid model was evaluated for responsiveness against two clinically used chemotherapeutic agents, doxorubicin and cisplatin. We suggest that this model may be useful to screen novel compounds including traditionally used phytomedicinal material for anticancer activity.

“In our second model, the cisplatin-resistant TNBC spheroid model was also exposed to cisplatin and doxorubicin and demonstrated a resistant response in terms of growth and viability. We believe that this model may be useful to further explore drug resistance mechanisms and may also be used as a tool to assess the drug reversal potential of novel compounds. The value and impact of these models lies in that they may offer predictive drug responses that are closer to that observed in in vivo (animals), as opposed to 2-D cell cultures. This however needs to be assessed. We are currently in the process to fully characterise these spheroids models.”

Aim of the research

Dr Abrahams explains their research aims to merge the gap between conventionally used 2-D cell models and in vivo models, by providing a model that is physiologically more accurate in mimicking the in vivo conditions and complex pathways associated with drug resistance, which is otherwise not observed or accurately expressed in 2D models. “Although our research is preclinical and considered fundamental basic research, the translational potential of our spheroid models may provide options for exploring and testing alternative drugs that may be considered for translational research,” Dr Abrahams says.

Characterising other advanced cell-based cancer models

The team is currently in the process of further characterising the TNBC spheroid model based on protein and genetic expression profiles to elucidate potential therapeutic biomarkers for drug treatment as well as screening various phytomedicinal plants, to assess their antiproliferative and drug-resistance reversal potential. In addition, the researchers recently commenced a new research project that aims to develop a drug-resistant prostate cancer spheroid model using the Clinostar™ system with their collaborators at the NWU.

Advanced cell-based model research is still relatively ‘new’ in South Africa and Africa, compared to the global North. As a result, says Dr Abrahams, their NWU collaborators together with other stakeholders, initiated the establishment of the Society for Advanced Cell Culture Modelling for Africa (SACCMA) in 2021, which aims to develop the fields of advanced cell modelling, three-dimensional (3D) cell cultures, 3D bioprinting and stem cell research, in Africa. Our current inter-departmental  collaboration include researchers from the Pharmacology department, but we hope to build and expand our collaboration network in the near future.

News Archive

The launch of a unique conservation project
2011-06-06

 

Our Department of Animal, Wildlife and Grassland Sciences launched a very special pilot project at Woodland Hills Wildlife Estate in Bloemfontein on Friday 03 June 2011, which aims to eventually aid in the conservation and study of one of Africa’s most graceful animals.

The project aims to provide the scientific basis needed for making future decisions in the best interests of the giraffe in the Kgalagadi Transfrontier Park in the Northern Cape and involves collaring and monitoring the behaviour and movement of these animals via GPS.

Based on the public interest in the giraffe and the increased impact of the growing giraffe population on the vegetation in the area, SANParks has been considering the translocation of a number of Kgalagadi giraffe. Due to limited information regarding their adaptation success and potential impact on their new environment, thorough planning and subsequent monitoring of the species is required.

Mr Francois Deacon from our university decided to undertake a PhD study to address the existing challenges. This will be the first study of its kind, undertaken on giraffe.

He says he decided on this project because of his love for animals and conservation. “There are nine sub-species of giraffe and seven of these are already endangered. I want to involve people and make them aware of the plight of the animals and the need for conservation,” he said.

The project kicked off on Friday morning, with a group of students and curious nature-lovers tracking a herd of giraffe at Woodland Hills. The challenge laid in identifying one of the animals which could easily be collared with a GPS device, tranquilising it, and applying the device, without harming the animal.

After a young bull was identified, it was up to Dr Floris Coetzee, a veterinarian, to get close enough to the animal to tranquilise it, and to the group of students to catch it and hold it down. All this was done perfectly and the animal was fitted with its new collars. The collars were designed and made by Mr Martin Haupt, who gained extensive experience in the design of similar collars for other research studies.

Mr Deacon will spend the following two weeks personally monitoring the animal constantly, to ensure that the collars do not cause any discomfort or injury and to determine whether it should be removed or adapted.

It has taken Mr Deacon over a year to plan the collaring process and the associated study. He says the main challenges in the project are financial, since it will cost approximately R500 000 to run over five years.

Thus far he has been supported by Mr Pieter Malan of Woodland Hills, Mr Cas Kempff of Cas Kempff Consulting Engineers and Prof. Frans Swanepoel of the UFS’ Directorate of Research Development, all of whom have been benefactors of the project.
Information gathered from the pilot project will provide the data to assess how to best fit the collar onto the giraffe to ensure that the animal is comfortable and that the collar will last in the wild.  Scientific data will be generated and processed for use by the Woodland Hills Wildlife Estate management.

Should the pilot project be successful, between four and eight giraffe in the Kgalagadi will be tracked using the satellite GPS collars. The GPS collars will enable the constant recording of the location of individual giraffe for up to 2 years. This will allow control and monitoring of the animals in real-time.

The main benefits of the project include, amongst others, improved decision-making, informing tourism development, education and community involvement, improved sustainability and improved cross-border collaboration between South Africa and Botswana.

Anyone who wishes to get involved with the project or get more information, should contact Me. Sonja Buhrmann at sbuhrmann@vodamail.co.za or 0827735768.
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept