Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 December 2024 | Story André Damons | Photo André Damons
Breast Cancer Research 2024
The research team consist of Dr Beynon Abrahams (left), Viwe Fokazi, MMed.Sci student, and PhD student Songezo Vazi.

In an effort to better understand chemotherapeutic treatment response in triple negative breast cancer (TNBC) – known as an aggressive cancer with high recurrence and high mortality rate in breast cancer patients – researchers from the University of the Free State (UFS) developed a drug-resistant TNBC spheroid model that is physiologically more accurate in displaying the complexities involved in drug-resistance development.

Dr Beynon Abrahams, Lecturer in the Department of Basic Medical Sciences within the UFS Faculty of Health Sciences, says breast cancer remains the most frequently diagnosed cancer in women. It is also the most debilitating type of cancer responsible for the highest cancer mortality rates in women. Though various subtypes of breast cancer exist, TNBC is one that is of particular interest to his research team.

“TNBC is one of the most difficult cancer types to treat, due to lack of treatment targets. This often leads to treatment failure in TNBC patients, with drug resistance being a common occurrence, contributing to high death rates. TNBC is classified based on its lack of expression of common receptors such as the estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2, which are commonly expressed in other cancer subtypes.

“Characteristically, TNBC is known as an aggressive cancer with high metastatic potential (spreading of cancer), resulting in a poor prognosis for these patients. The current prescribed therapies for TNBC, entails multidrug combination systemic therapy including chemotherapeutic agents such as doxorubicin and cisplatin as adjuvant therapy. However, despite these therapeutic interventions, drug resistance is a common occurrence,” says Dr Abrahams.

The best available preclinical cell-based models should be used

For effective drug treatments to be developed for TNBC therapeutics, he continues, the best available disease models should be used to not only improve our understanding of the disease physiology and its numerous mechanisms involved in chemotherapeutic resistance development but also to provide accurate results when determining how safe and effective newly developed drugs are, before they may be considered for further development and testing on humans.

According to him, in preclinical cancer research the conventional methods employed to study disease mechanisms, drug action and drug resistance is ineffective. Firstly, the traditionally used preclinical 2-dimensional (2-D) cell culture models do not accurately recapitulate the architectural biology observed in vivo, second, the drug responses assessed in these models may provide inaccurate results and limit its translational potential, explains Dr Abrahams. Thus, more advanced cell-based models such as 3-dimensional (3-D) spheroids and organoids to name a few, should be considered as alternatives.

The UFS research team, in collaboration with the Centre of Excellence for Pharmaceutical Sciences (Pharmacen™) at the North-West University (NWU), recently took the undertaking to establish two triple negative breast cancer 3-D spheroid models, using the clinostat rotating bioreactor ClinoStar™ system, designed by CelVivo in Denmark. The project is funded by the National Research Foundation.

The ClinoStar™ system promotes the self-aggregation of single cells, and natural formation of 3-D spheroids, through slow rotation within a cell growth chamber known as an incubator. There are various techniques and methods available to develop spheroids and organoids, however the ClinoStar™ systems allow for the development of metabolically stable spheroids, over a longer period of time, as opposed to other methods. It also eliminates the sheer-stress conditions that are normally encountered when using 2-D cell culture models.

“We successfully established one chemotherapeutic-sensitive triple negative breast cancer spheroid model and one novel cisplatin-resistant triple negative breast cancer spheroid model. The chemo-sensitive TNBC spheroid model was evaluated for responsiveness against two clinically used chemotherapeutic agents, doxorubicin and cisplatin. We suggest that this model may be useful to screen novel compounds including traditionally used phytomedicinal material for anticancer activity.

“In our second model, the cisplatin-resistant TNBC spheroid model was also exposed to cisplatin and doxorubicin and demonstrated a resistant response in terms of growth and viability. We believe that this model may be useful to further explore drug resistance mechanisms and may also be used as a tool to assess the drug reversal potential of novel compounds. The value and impact of these models lies in that they may offer predictive drug responses that are closer to that observed in in vivo (animals), as opposed to 2-D cell cultures. This however needs to be assessed. We are currently in the process to fully characterise these spheroids models.”

Aim of the research

Dr Abrahams explains their research aims to merge the gap between conventionally used 2-D cell models and in vivo models, by providing a model that is physiologically more accurate in mimicking the in vivo conditions and complex pathways associated with drug resistance, which is otherwise not observed or accurately expressed in 2D models. “Although our research is preclinical and considered fundamental basic research, the translational potential of our spheroid models may provide options for exploring and testing alternative drugs that may be considered for translational research,” Dr Abrahams says.

Characterising other advanced cell-based cancer models

The team is currently in the process of further characterising the TNBC spheroid model based on protein and genetic expression profiles to elucidate potential therapeutic biomarkers for drug treatment as well as screening various phytomedicinal plants, to assess their antiproliferative and drug-resistance reversal potential. In addition, the researchers recently commenced a new research project that aims to develop a drug-resistant prostate cancer spheroid model using the Clinostar™ system with their collaborators at the NWU.

Advanced cell-based model research is still relatively ‘new’ in South Africa and Africa, compared to the global North. As a result, says Dr Abrahams, their NWU collaborators together with other stakeholders, initiated the establishment of the Society for Advanced Cell Culture Modelling for Africa (SACCMA) in 2021, which aims to develop the fields of advanced cell modelling, three-dimensional (3D) cell cultures, 3D bioprinting and stem cell research, in Africa. Our current inter-departmental  collaboration include researchers from the Pharmacology department, but we hope to build and expand our collaboration network in the near future.

News Archive

Another boost for sport at the UFS
2005-10-13

A contract formalizing the appointment of Sports Plan (Pty) Ltd was signed by Prof Verschoor and Mr Morne du Plessis in the historic Main Building of the UFS Bloemfontein campus.

 

The University of the Free State (UFS) has officially appointed Sports Plan (Pty) Ltd, which has former Springbok rugby captain Morné du Plessis as managing director, to manage its Centre for Exercise and Sport Science Services (CESSS) on the Bloemfontein campus.

According to Prof Teuns Verschoor, Vice-Rector: Academic Operations, the appointment of Sports Plan (Pty) Ltd is another step in the implementation of the UFS’s wide-ranging sport strategy to improve sport facilities and elevate formerly marginalized sports such as soccer, hockey, netball, tennis etc.

Sports Plan (Pty) Ltd is the manager of the Sports Science Institute of South Africa and coordinates and manages the national basketball high-performance programme of SA Basketball, as well as the Boxing Academy on behalf of Boxing South Africa. 

“It is also actively involved with the sports plans of several tertiary institutions like that of the University of Johannesburg and the University of Stellenbosch,” said Prof Verschoor.

“Sports Plan (Pty) Ltd was also appointed by the Ministry of Sport and Recreation to manage the allocation of sports codes to high-performance centres and to oversee the allocation of monies received from the National Lottery to these centres – this includes the CESSS at the UFS,” Prof Verschoor added.

In unfolding its national sports plan, the Ministry of Sport and Recreation has already identified the UFS-based CESSS as the high-performance testing centre for the national basketball teams whilst the national boxing teams are also earmarked to be trained at the UFS.

“We are glad to be associated with a company of this stature and look forward to work with them in the further development of sports at the UFS,” said Prof Verschoor.

According to Prof Verschoor, the CESSS will act as a centralised body that is responsible for the coordination and management of joint initiatives between professional service providers, research projects and KovsieSport.

“The centre will also coordinate and manage joint initiatives between various academic programmes in different academic subject fields such as sports medicine, bio kinetics, physiotherapy, dietetics, etc. ,” said Prof Verschoor.

These initiatives will help the UFS to become a centre and catalyst of sports development, to become internationally recognised in the field of exercise and sports science research and to become a centre for high quality sports performance enhancement.

Some of the objectives of the CESSS are:

  •  

  • To provide sports science services like to athletes, students, the general public and other stakeholders including certain national sport teams.
  • To provide the necessary teaching and training facilities and internship opportunities for UFS students in sports related fields of study will also be provided by the centre like human movement science.
  • To present skills-transfer programmes directed at the broader community like development of skills in various sporting codes.
  • To continue and extend the current chronic risk reversal programmes presented by the Department of Human Movement Science such as obesity management, cardiac rehabilitation and other lifestyle related conditions.

The centre was founded in 2003 and was until now managed by Dr Louis Holtzhausen, from Kovsie Health and a consultant, Dr Gary Vorster. 

A contract formalizing the appointment of Sports Plan (Pty) Ltd was signed today by Prof Verschoor and Mr Morne du Plessis in the historic Main Building of the UFS Bloemfontein campus.

 

 

 

 

The manager of the centre appointed by Sports Plan (Pty) Ltd is Mr Charles Store, an alumnus of the UFS, previously employed at the Sports Science Institute in Cape Town and by the SANDF at 3 Military Hospital, Bloemfontein.

 

Media release
Issued by: Anton Fisher
Director: Strategic Communication
072-207-8334
12 October 2005
 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept