Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 December 2024 | Story André Damons | Photo André Damons
Breast Cancer Research 2024
The research team consist of Dr Beynon Abrahams (left), Viwe Fokazi, MMed.Sci student, and PhD student Songezo Vazi.

In an effort to better understand chemotherapeutic treatment response in triple negative breast cancer (TNBC) – known as an aggressive cancer with high recurrence and high mortality rate in breast cancer patients – researchers from the University of the Free State (UFS) developed a drug-resistant TNBC spheroid model that is physiologically more accurate in displaying the complexities involved in drug-resistance development.

Dr Beynon Abrahams, Lecturer in the Department of Basic Medical Sciences within the UFS Faculty of Health Sciences, says breast cancer remains the most frequently diagnosed cancer in women. It is also the most debilitating type of cancer responsible for the highest cancer mortality rates in women. Though various subtypes of breast cancer exist, TNBC is one that is of particular interest to his research team.

“TNBC is one of the most difficult cancer types to treat, due to lack of treatment targets. This often leads to treatment failure in TNBC patients, with drug resistance being a common occurrence, contributing to high death rates. TNBC is classified based on its lack of expression of common receptors such as the estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2, which are commonly expressed in other cancer subtypes.

“Characteristically, TNBC is known as an aggressive cancer with high metastatic potential (spreading of cancer), resulting in a poor prognosis for these patients. The current prescribed therapies for TNBC, entails multidrug combination systemic therapy including chemotherapeutic agents such as doxorubicin and cisplatin as adjuvant therapy. However, despite these therapeutic interventions, drug resistance is a common occurrence,” says Dr Abrahams.

The best available preclinical cell-based models should be used

For effective drug treatments to be developed for TNBC therapeutics, he continues, the best available disease models should be used to not only improve our understanding of the disease physiology and its numerous mechanisms involved in chemotherapeutic resistance development but also to provide accurate results when determining how safe and effective newly developed drugs are, before they may be considered for further development and testing on humans.

According to him, in preclinical cancer research the conventional methods employed to study disease mechanisms, drug action and drug resistance is ineffective. Firstly, the traditionally used preclinical 2-dimensional (2-D) cell culture models do not accurately recapitulate the architectural biology observed in vivo, second, the drug responses assessed in these models may provide inaccurate results and limit its translational potential, explains Dr Abrahams. Thus, more advanced cell-based models such as 3-dimensional (3-D) spheroids and organoids to name a few, should be considered as alternatives.

The UFS research team, in collaboration with the Centre of Excellence for Pharmaceutical Sciences (Pharmacen™) at the North-West University (NWU), recently took the undertaking to establish two triple negative breast cancer 3-D spheroid models, using the clinostat rotating bioreactor ClinoStar™ system, designed by CelVivo in Denmark. The project is funded by the National Research Foundation.

The ClinoStar™ system promotes the self-aggregation of single cells, and natural formation of 3-D spheroids, through slow rotation within a cell growth chamber known as an incubator. There are various techniques and methods available to develop spheroids and organoids, however the ClinoStar™ systems allow for the development of metabolically stable spheroids, over a longer period of time, as opposed to other methods. It also eliminates the sheer-stress conditions that are normally encountered when using 2-D cell culture models.

“We successfully established one chemotherapeutic-sensitive triple negative breast cancer spheroid model and one novel cisplatin-resistant triple negative breast cancer spheroid model. The chemo-sensitive TNBC spheroid model was evaluated for responsiveness against two clinically used chemotherapeutic agents, doxorubicin and cisplatin. We suggest that this model may be useful to screen novel compounds including traditionally used phytomedicinal material for anticancer activity.

“In our second model, the cisplatin-resistant TNBC spheroid model was also exposed to cisplatin and doxorubicin and demonstrated a resistant response in terms of growth and viability. We believe that this model may be useful to further explore drug resistance mechanisms and may also be used as a tool to assess the drug reversal potential of novel compounds. The value and impact of these models lies in that they may offer predictive drug responses that are closer to that observed in in vivo (animals), as opposed to 2-D cell cultures. This however needs to be assessed. We are currently in the process to fully characterise these spheroids models.”

Aim of the research

Dr Abrahams explains their research aims to merge the gap between conventionally used 2-D cell models and in vivo models, by providing a model that is physiologically more accurate in mimicking the in vivo conditions and complex pathways associated with drug resistance, which is otherwise not observed or accurately expressed in 2D models. “Although our research is preclinical and considered fundamental basic research, the translational potential of our spheroid models may provide options for exploring and testing alternative drugs that may be considered for translational research,” Dr Abrahams says.

Characterising other advanced cell-based cancer models

The team is currently in the process of further characterising the TNBC spheroid model based on protein and genetic expression profiles to elucidate potential therapeutic biomarkers for drug treatment as well as screening various phytomedicinal plants, to assess their antiproliferative and drug-resistance reversal potential. In addition, the researchers recently commenced a new research project that aims to develop a drug-resistant prostate cancer spheroid model using the Clinostar™ system with their collaborators at the NWU.

Advanced cell-based model research is still relatively ‘new’ in South Africa and Africa, compared to the global North. As a result, says Dr Abrahams, their NWU collaborators together with other stakeholders, initiated the establishment of the Society for Advanced Cell Culture Modelling for Africa (SACCMA) in 2021, which aims to develop the fields of advanced cell modelling, three-dimensional (3D) cell cultures, 3D bioprinting and stem cell research, in Africa. Our current inter-departmental  collaboration include researchers from the Pharmacology department, but we hope to build and expand our collaboration network in the near future.

News Archive

UFS to investigate implementation of quality-monitoring system for SA food industry
2006-02-07

Some of the guests who attended the workshop were from the left Prof James du Preez (Chairperson: Department of Biotechnology at the UFS); Prof Lodewyk Kock (Head: South African Fryer Oil Initiative (SAFOI) at the UFS)); Mrs Ina Wilken (Chairperson: South African National Consumer Union (SANCU)); Prof Herman van Schalkwyk (Dean: Faculty of Natural and Agricultural Sciences at the UFS) and Mr Joe Hanekom (Managing Director of Agri Inspec).
Photo: Stephen Collet
 

UFS to investigate implementation of quality-monitoring system for SA food industry

The University of the Free State (UFS) will be investigating the implementation of a quality-monitoring service for the South African food industry. 

This was decided during a workshop to discuss the external quality monitoring in the edible oil industry of South Africa, which was recently held at the UFS.

Major role players in the fast-food sector like Nando's, Spur, Captain
Dorego's, King Pie Holdings, Black Steer Holdings, etc and various oil
distributors like Felda Bridge Africa, Refill Oils, PSS Oils and Ilanga Oils attended
the workshop. Also present was Mrs Ina Wilken, Chairperson of the South African National Consumer Union (SANCU) and key-note speaker of this workshop. She represented the consumer.  

These role players all pledged their support to the implementation of this quality- monitoring system for the whole food industry. 

The decision to implement this system follows the various malpractices reported in the press and on TV concerning food adulteration (eg the recent Sudan Red Scare), misrepresentation (eg olive oil scandal exposed in 2001) and the misuse of edible frying oils by the fast-food sector. 

“One of the basic rights of consumers is the right to safe food. Consumers must be protected against foods and food production processes which are hazardous to their health. Sufficient guarantee of the safety of all food products and food production processes should be implemented. It does not help to have adequate food standards and legislation and there is no manpower to do the necessary investigation or monitoring,” said Mrs Wilken.

The South African Fryer Oil Initiative (SAFOI), under the auspices of the UFS Department of Microbial, Biochemical and Food Biotechnology, currently monitors edible oils in the food industry and makes a seal of quality available to food distributors.

“Last week’s decision to implement the quality-monitoring system implies that we will now be involving also other departments in the UFS Faculty of Natural and Agricultural Sciences who are involved in various aspects of the food chain in an endeavor to implement this quality monitoring system,” said Prof Herman van Schalkwyk, Dean:  Faculty of Natural and Agricultural Sciences at the UFS and one of the main speakers at the workshop.

Prof van Schalkwyk said that the main aim of such a system will be to improve the competitiveness of the South African food industry.  “It is clear that the role players attending the workshop are serious about consumer service and that they agree that fraudulent practice should be monitored and corrected as far as possible.  Although some of the food outlets have the capacity to monitor the quality of their food, it may not seem to the consumer that this is an objective process.  The proposed external monitoring system would counteract this perception amongst consumers,” said Prof van Schalkwyk.

The workshop was also attended by representatives from SAFOI and Agri Inspec, a forensic investigation company collaborating with inter-state and government structures to combat fraud and international trade irregularities.

Agri Inspec has been working closely with SAFOI for a number of years to test the content of edible oils and fats.  “Extensive monitoring and control actions have been executed in the edible oil industry during the past four years to ensure that the content and labeling of oil products are correct.  Four years ago almost 90% of the samples taken indicated that the content differed from what is indicated on the label.  This has changed and the test results currently show that 90% of the products tested are in order. However, to maintain this quality standard, it is necessary that quality monitoring and educational campaigns are continuously performed,” said Mr Joe Hanekom, Managing Director of Agri Inspec. 

“The seal of quality presented by SAFOI should also be extended to include all the smaller oil containers used by households,” Mrs Wilken said.

The SAFOI seal of quality is currently displayed mainly on some oil brands packed in bigger 20 liter containers, which include sunflower oil, cottonseed oil, palm oil etc which are used by restaurants and fast food outlets.  “Any oil type is eligible to display the seal when meeting certain standards of authenticity.  In order to display the seal, the distributor must send a sample of each oil batch they receive from the manufacturer to SAFOI for testing for authenticity, ie that the container’s content matches the oil type described on the label. This is again double checked by Agri Inspec, which also draws samples countrywide from these certified brands from the end-user (restaurant or fast food outlets). If in breach, the seal must be removed from the faulty containers,” said Prof Lodewyk Kock, Head of SAFOI.

“It should however be taken into account that oils without a seal of quality from the UFS can still be of high quality and authentic. Other external laboratories equipped to perform effective authenticity tests may also be used in this respect,” said Prof Kock.

“It is also important to realise that any oil type of quality such as sunflower oil, cottonseed oil, palm oil etc can be used with great success in well controlled frying processes,” he said.

Further discussions will also be held with the Department of Health, the SA National Consumer Union and Agri Inspec to determine priority areas and to develop the most effective low-cost monitoring system.

More information on the UFS oil seal of quality and oil use can be obtained at www.uovs.ac.za/myoilguide

Media release
Issued by: Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
6 February 2006

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept