Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 December 2024 | Story André Damons | Photo André Damons
Breast Cancer Research 2024
The research team consist of Dr Beynon Abrahams (left), Viwe Fokazi, MMed.Sci student, and PhD student Songezo Vazi.

In an effort to better understand chemotherapeutic treatment response in triple negative breast cancer (TNBC) – known as an aggressive cancer with high recurrence and high mortality rate in breast cancer patients – researchers from the University of the Free State (UFS) developed a drug-resistant TNBC spheroid model that is physiologically more accurate in displaying the complexities involved in drug-resistance development.

Dr Beynon Abrahams, Lecturer in the Department of Basic Medical Sciences within the UFS Faculty of Health Sciences, says breast cancer remains the most frequently diagnosed cancer in women. It is also the most debilitating type of cancer responsible for the highest cancer mortality rates in women. Though various subtypes of breast cancer exist, TNBC is one that is of particular interest to his research team.

“TNBC is one of the most difficult cancer types to treat, due to lack of treatment targets. This often leads to treatment failure in TNBC patients, with drug resistance being a common occurrence, contributing to high death rates. TNBC is classified based on its lack of expression of common receptors such as the estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2, which are commonly expressed in other cancer subtypes.

“Characteristically, TNBC is known as an aggressive cancer with high metastatic potential (spreading of cancer), resulting in a poor prognosis for these patients. The current prescribed therapies for TNBC, entails multidrug combination systemic therapy including chemotherapeutic agents such as doxorubicin and cisplatin as adjuvant therapy. However, despite these therapeutic interventions, drug resistance is a common occurrence,” says Dr Abrahams.

The best available preclinical cell-based models should be used

For effective drug treatments to be developed for TNBC therapeutics, he continues, the best available disease models should be used to not only improve our understanding of the disease physiology and its numerous mechanisms involved in chemotherapeutic resistance development but also to provide accurate results when determining how safe and effective newly developed drugs are, before they may be considered for further development and testing on humans.

According to him, in preclinical cancer research the conventional methods employed to study disease mechanisms, drug action and drug resistance is ineffective. Firstly, the traditionally used preclinical 2-dimensional (2-D) cell culture models do not accurately recapitulate the architectural biology observed in vivo, second, the drug responses assessed in these models may provide inaccurate results and limit its translational potential, explains Dr Abrahams. Thus, more advanced cell-based models such as 3-dimensional (3-D) spheroids and organoids to name a few, should be considered as alternatives.

The UFS research team, in collaboration with the Centre of Excellence for Pharmaceutical Sciences (Pharmacen™) at the North-West University (NWU), recently took the undertaking to establish two triple negative breast cancer 3-D spheroid models, using the clinostat rotating bioreactor ClinoStar™ system, designed by CelVivo in Denmark. The project is funded by the National Research Foundation.

The ClinoStar™ system promotes the self-aggregation of single cells, and natural formation of 3-D spheroids, through slow rotation within a cell growth chamber known as an incubator. There are various techniques and methods available to develop spheroids and organoids, however the ClinoStar™ systems allow for the development of metabolically stable spheroids, over a longer period of time, as opposed to other methods. It also eliminates the sheer-stress conditions that are normally encountered when using 2-D cell culture models.

“We successfully established one chemotherapeutic-sensitive triple negative breast cancer spheroid model and one novel cisplatin-resistant triple negative breast cancer spheroid model. The chemo-sensitive TNBC spheroid model was evaluated for responsiveness against two clinically used chemotherapeutic agents, doxorubicin and cisplatin. We suggest that this model may be useful to screen novel compounds including traditionally used phytomedicinal material for anticancer activity.

“In our second model, the cisplatin-resistant TNBC spheroid model was also exposed to cisplatin and doxorubicin and demonstrated a resistant response in terms of growth and viability. We believe that this model may be useful to further explore drug resistance mechanisms and may also be used as a tool to assess the drug reversal potential of novel compounds. The value and impact of these models lies in that they may offer predictive drug responses that are closer to that observed in in vivo (animals), as opposed to 2-D cell cultures. This however needs to be assessed. We are currently in the process to fully characterise these spheroids models.”

Aim of the research

Dr Abrahams explains their research aims to merge the gap between conventionally used 2-D cell models and in vivo models, by providing a model that is physiologically more accurate in mimicking the in vivo conditions and complex pathways associated with drug resistance, which is otherwise not observed or accurately expressed in 2D models. “Although our research is preclinical and considered fundamental basic research, the translational potential of our spheroid models may provide options for exploring and testing alternative drugs that may be considered for translational research,” Dr Abrahams says.

Characterising other advanced cell-based cancer models

The team is currently in the process of further characterising the TNBC spheroid model based on protein and genetic expression profiles to elucidate potential therapeutic biomarkers for drug treatment as well as screening various phytomedicinal plants, to assess their antiproliferative and drug-resistance reversal potential. In addition, the researchers recently commenced a new research project that aims to develop a drug-resistant prostate cancer spheroid model using the Clinostar™ system with their collaborators at the NWU.

Advanced cell-based model research is still relatively ‘new’ in South Africa and Africa, compared to the global North. As a result, says Dr Abrahams, their NWU collaborators together with other stakeholders, initiated the establishment of the Society for Advanced Cell Culture Modelling for Africa (SACCMA) in 2021, which aims to develop the fields of advanced cell modelling, three-dimensional (3D) cell cultures, 3D bioprinting and stem cell research, in Africa. Our current inter-departmental  collaboration include researchers from the Pharmacology department, but we hope to build and expand our collaboration network in the near future.

News Archive

New challenges for animal science discussed
2006-04-04

Some of the guests attending the congress were from the left Dr Heinz Meissner (honorary president of the South African Society for Animal Science (SASAS) and senior manager at the Animal Production Institute of the Agricultural Research Council), Mr Paul Bevan (President of SASAS) and Prof Magda Fourie (Vice-Rector:  Academic Planning at the UFS).
Photo: Lacea Loader

New challenges for animal science discussed  

The South African Society for Animal Science (SASAS) is presenting its 41st Congress at the University of the Free State’s (UFS) Main Campus in Bloemfontein. 

The congress started yesterday and will run until Thursday 6 April 2006.  The theme is New challenges for the animal science industries.

It is one of the largest congresses in the 45 years since SASAS was founded in 1961.  Among the delegates 12 African countries are represented, with the biggest delegation from Kenya.  Delegates are also from the United States of America, Iran, Turkey, Germany, the Netherlands and Portugal and African countries like Zimbabwe, Mozambique and Botswana.

“Many of our members play an important role in the training of animal scientists at universities.  The congress is specifically industry orientated so that scientists can interact with farmers through the respective producer organisations,” said Prof HO de Waal, Chairperson of the organising committee and lecturer at the UFS Department of Animal, Wildlife and Grassland Sciences.

According to Dr Heinz Meissner, honorary president of SASAS and a senior manager at the Animal Production Institute of the Agricultural Research Council, the National Livestock Strategy (NLS) Plan clarifies the role and responsibility of the livestock sector. 

“Through this strategy we need to focus on enhancing equitable access and participation in livestock agriculture, improve global competitiveness and profitability of the livestock sector and ensure that the ventures implemented do not over utilise our resources,” said Dr Meissner.

In her welcoming address, Prof Magda Fourie, Vice-Rector:  Academic Planning at the UFS highlighted the related challenges that the UFS will be focusing on specifically over the next five years.  “We have identified five strategic clusters that represent broad areas of excellence in research and post-graduate education.  Two of these are food production, quality and safety for Africa and sustainable development,” she said.

“The food safety and security cluster will focus on the production of food in all its varieties within the African context, encompassing the entire value chain – from production to consumption and nutrition related issues.  This would include a strong emphasis on sustainable production systems,” she said.

According to Prof Fourie the rural development cluster will engage in questions around the role of higher education in sustainable development.  “One of the focus areas in this strategic cluster pertains to sustainable livelihoods.  It refers to a way of approaching development that incorporates all aspects of human livelihoods and means by which people obtain them,” she said.

Prof Fourie said that the challenges we are facing such as food production can only be effectively addressed through collaborative efforts.  “That is why it is important that collaboration takes place between different scientific disciplines, researchers, institutions and countries who are confronted with similar difficulties,” she said.

According to Prof de Waal the congress will give key role players a unique opportunity to present a profile of what they perceive an animal scientist should be and state their specific requirement regarding the animal sciences and its applications. 

“In this way we can determine what the industry’s needs are and we can re-align our curriculum to suit these needs,” said Prof de Waal.

During the next two days, various areas of interest will be discussed.  This includes ruminant and monogastric nutrition, animal physiology, beef, dairy, sheep and ostrich breeding and sustainable farming covering the range from commercial to the small-scale farming level.

Media release
Issued by: Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
4 April 2006

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept