Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 December 2024 | Story André Damons | Photo André Damons
Breast Cancer Research 2024
The research team consist of Dr Beynon Abrahams (left), Viwe Fokazi, MMed.Sci student, and PhD student Songezo Vazi.

In an effort to better understand chemotherapeutic treatment response in triple negative breast cancer (TNBC) – known as an aggressive cancer with high recurrence and high mortality rate in breast cancer patients – researchers from the University of the Free State (UFS) developed a drug-resistant TNBC spheroid model that is physiologically more accurate in displaying the complexities involved in drug-resistance development.

Dr Beynon Abrahams, Lecturer in the Department of Basic Medical Sciences within the UFS Faculty of Health Sciences, says breast cancer remains the most frequently diagnosed cancer in women. It is also the most debilitating type of cancer responsible for the highest cancer mortality rates in women. Though various subtypes of breast cancer exist, TNBC is one that is of particular interest to his research team.

“TNBC is one of the most difficult cancer types to treat, due to lack of treatment targets. This often leads to treatment failure in TNBC patients, with drug resistance being a common occurrence, contributing to high death rates. TNBC is classified based on its lack of expression of common receptors such as the estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2, which are commonly expressed in other cancer subtypes.

“Characteristically, TNBC is known as an aggressive cancer with high metastatic potential (spreading of cancer), resulting in a poor prognosis for these patients. The current prescribed therapies for TNBC, entails multidrug combination systemic therapy including chemotherapeutic agents such as doxorubicin and cisplatin as adjuvant therapy. However, despite these therapeutic interventions, drug resistance is a common occurrence,” says Dr Abrahams.

The best available preclinical cell-based models should be used

For effective drug treatments to be developed for TNBC therapeutics, he continues, the best available disease models should be used to not only improve our understanding of the disease physiology and its numerous mechanisms involved in chemotherapeutic resistance development but also to provide accurate results when determining how safe and effective newly developed drugs are, before they may be considered for further development and testing on humans.

According to him, in preclinical cancer research the conventional methods employed to study disease mechanisms, drug action and drug resistance is ineffective. Firstly, the traditionally used preclinical 2-dimensional (2-D) cell culture models do not accurately recapitulate the architectural biology observed in vivo, second, the drug responses assessed in these models may provide inaccurate results and limit its translational potential, explains Dr Abrahams. Thus, more advanced cell-based models such as 3-dimensional (3-D) spheroids and organoids to name a few, should be considered as alternatives.

The UFS research team, in collaboration with the Centre of Excellence for Pharmaceutical Sciences (Pharmacen™) at the North-West University (NWU), recently took the undertaking to establish two triple negative breast cancer 3-D spheroid models, using the clinostat rotating bioreactor ClinoStar™ system, designed by CelVivo in Denmark. The project is funded by the National Research Foundation.

The ClinoStar™ system promotes the self-aggregation of single cells, and natural formation of 3-D spheroids, through slow rotation within a cell growth chamber known as an incubator. There are various techniques and methods available to develop spheroids and organoids, however the ClinoStar™ systems allow for the development of metabolically stable spheroids, over a longer period of time, as opposed to other methods. It also eliminates the sheer-stress conditions that are normally encountered when using 2-D cell culture models.

“We successfully established one chemotherapeutic-sensitive triple negative breast cancer spheroid model and one novel cisplatin-resistant triple negative breast cancer spheroid model. The chemo-sensitive TNBC spheroid model was evaluated for responsiveness against two clinically used chemotherapeutic agents, doxorubicin and cisplatin. We suggest that this model may be useful to screen novel compounds including traditionally used phytomedicinal material for anticancer activity.

“In our second model, the cisplatin-resistant TNBC spheroid model was also exposed to cisplatin and doxorubicin and demonstrated a resistant response in terms of growth and viability. We believe that this model may be useful to further explore drug resistance mechanisms and may also be used as a tool to assess the drug reversal potential of novel compounds. The value and impact of these models lies in that they may offer predictive drug responses that are closer to that observed in in vivo (animals), as opposed to 2-D cell cultures. This however needs to be assessed. We are currently in the process to fully characterise these spheroids models.”

Aim of the research

Dr Abrahams explains their research aims to merge the gap between conventionally used 2-D cell models and in vivo models, by providing a model that is physiologically more accurate in mimicking the in vivo conditions and complex pathways associated with drug resistance, which is otherwise not observed or accurately expressed in 2D models. “Although our research is preclinical and considered fundamental basic research, the translational potential of our spheroid models may provide options for exploring and testing alternative drugs that may be considered for translational research,” Dr Abrahams says.

Characterising other advanced cell-based cancer models

The team is currently in the process of further characterising the TNBC spheroid model based on protein and genetic expression profiles to elucidate potential therapeutic biomarkers for drug treatment as well as screening various phytomedicinal plants, to assess their antiproliferative and drug-resistance reversal potential. In addition, the researchers recently commenced a new research project that aims to develop a drug-resistant prostate cancer spheroid model using the Clinostar™ system with their collaborators at the NWU.

Advanced cell-based model research is still relatively ‘new’ in South Africa and Africa, compared to the global North. As a result, says Dr Abrahams, their NWU collaborators together with other stakeholders, initiated the establishment of the Society for Advanced Cell Culture Modelling for Africa (SACCMA) in 2021, which aims to develop the fields of advanced cell modelling, three-dimensional (3D) cell cultures, 3D bioprinting and stem cell research, in Africa. Our current inter-departmental  collaboration include researchers from the Pharmacology department, but we hope to build and expand our collaboration network in the near future.

News Archive

UFS implements access control measures on our Bloemfontein Campus
2014-11-21



Photo: Hannes Pieterse

Online Application form: non personnel

Map with access gates on the Bloemfontein Campus


Accessing the Bloemfontein Campus from 3 November 2014

Access control during major events on the Bloemfontein Campus

Q&A




The University of the Free State (UFS) has been tightening security measures on its Bloemfontein Campus for quite some time now. Purposefully, we have consolidated several safety measures to keep our students, staff and visitors – the heartbeat of our university – protected.

Our most significant step in this endeavour is now in the process of implementation. All five entrance gates to the campus are being equipped with strict access control.

The first phase of the process was implemented beginning of August 2014. Gates 2 (Badenhorst Street) and 4 (Furstenburg Street) were equipped with card readers. Only persons with valid access cards can enter and leave through these gates. Existing staff and student cards are equipped to be read by the short-distance card readers at the gates in order to activate the booms.

At this stage, staff and students are swiping their cards against the card readers at Gates 2 and 4 or holding it not further than 20 mm from the reader for the boom to open. Card holders now physically stop in front of the boom in order to get access to the campus.  

The duel-frequency card:

The dual-frequency cards available at the Card Division on the Thakaneng Bridge are currently out of stock. New cards will be delivered on Friday 14 November 2014.

The special offer of R30 per access card has been extended to the end of November 2014. To qualify for this offer, staff and students may pay the R30 for a dual-frequency card at the bank or cashiers on the Thakaneng Bridge no later than 28 November.  The cost of dual-frequency cards will increase to R60 per card from 1 December 2014.

Please note that only people with vehicles need to apply for dual-frequency cards.

Students and staff will, however, still be able to gain access to the Bloemfontein Campus with their current cards (in the case of staff and students who haven’t purchased dual-frequency cards yet). As is currently the practice at the gates in Furstenburg and Badenhorst Streets, you will have to stop when you reach the boom, swipe your card past the card reader, the boom will open and you will be able to drive through.

Staff and students using their dual-frequency cards should:

-       Reduce speed
-       Hold the card in a vertical position at the driver’s side window, in the direction of the long-distance reader (see photo)

It is therefore not necessary to stop in front of the boom. On holding your card upright, in line with the card reader, the gate will open automatically and you will be able to drive through (keep your card outside your window; the card reader cannot operate through tinted windows).

Please note that this arrangement only applies to incoming lanes. On leaving the campus, the card has to be swiped. This is due to the number-plate recognition technology installed at exits for additional security.

If the long-distance reader does not work, the dual-frequency card can still be used at a tag reader. 

Applying for your new card:

Electronic fund transfers: Absa Bank: 1 570 8500 71, Ref: 1 413 07670 0198, OR pay the R30 at the UFS Cashiers, Thakaneng Bridge. Please note that the price of the cards will increase to R60 from 1 November 2014.

Take your existing personnel or student card, together with proof of payment, to the UFS Card Division, Bloemfontein Campus, Thakaneng Bridge, to have your photo taken and your new dual-frequency card issued.

Permission to access specific UFS buildings or facilities linked to your existing card, will be automatically linked to the new card.

The new card is marked ‘dual’ on the back in the right, bottom corner.

The UFS Cashiers will provide assistance between 09:00 and 14:30, and the UFS Card Division between 09:00 and 15:00.

Implementation of full access control


Full access control will be implemented on the UFS’s Bloemfontein Campus from 3 November 2014. This means that access control will be implemented at all gates on the Bloemfontein Campus.

Who is using which gate? See Q&A for more information.


Gate 3 (Wynand Mouton Drive) is earmarked for use by official card holders. These include students, staff and persons doing business on campus. Parents dropping and fetching their children for sports, as well as service providers of the UFS, such as architects, may apply for valid cards. These persons will have to provide proof that they have business on campus (complete online application form and sign declaration).

All visitors to the campus will be referred to the Visitor’s Centre at Gate 5 (DF Malherbe Drive). This include, among others, parents, family and friends of students, as well as conference delegates. It is estimated that the Visitor’s Centre will be completed at the end of November (note that the gate at DF Malherbe Drive will be operational by 3 November 2014). Visitors will sign in at the Visitor’s Centre and, depending on the business they have on campus, they will only be allowed on campus for a certain period of time.

•    Lane 1 at Gate 5 will be used by visitors and service providers to enter the campus. Only card holders will be able to use lane 2.
•    Buses and trucks can also enter the campus through Gate 5.

The construction at the Main Gate at Nelson Mandela Drive is to build one extra lane for incoming traffic. The project is estimated to be completed at the end of October 2014.

•    For outgoing traffic, lane 1 (furthest from the guardhouse) and lane 2 will only be used by card holders and lane 3 (closest to the booth) will be used by service providers.
•    For incoming traffic, lanes 2 and 3 were set aside for use by only service providers. Lanes 1 and 4 will be used by only card holders.

Pedestrians

All gates for motorists will also be equipped with a pedestrian thoroughfare on completion of the project. Persons using these pedestrian gates also need to use their cards to get access to the campus.

Pedestrians who are visitors, but aren’t in possession of a valid access card, should please go to the Visitor’s Centre at the gate in DF Malherbe Drive where they will be helped.

More information

For more information on access control at the UFS, please watch our videos and read the Q&A or e-mail your enquiries to accesscontrol@ufs.ac.za.  


Issued by:    Lacea Loader (Director: Communication and Brand Management)
Tel: +27(0)51 401 2584 | +27(0)83 645 2454
E-mail: news@ufs.ac.za


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept