Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 December 2024 | Story André Damons | Photo André Damons
Breast Cancer Research 2024
The research team consist of Dr Beynon Abrahams (left), Viwe Fokazi, MMed.Sci student, and PhD student Songezo Vazi.

In an effort to better understand chemotherapeutic treatment response in triple negative breast cancer (TNBC) – known as an aggressive cancer with high recurrence and high mortality rate in breast cancer patients – researchers from the University of the Free State (UFS) developed a drug-resistant TNBC spheroid model that is physiologically more accurate in displaying the complexities involved in drug-resistance development.

Dr Beynon Abrahams, Lecturer in the Department of Basic Medical Sciences within the UFS Faculty of Health Sciences, says breast cancer remains the most frequently diagnosed cancer in women. It is also the most debilitating type of cancer responsible for the highest cancer mortality rates in women. Though various subtypes of breast cancer exist, TNBC is one that is of particular interest to his research team.

“TNBC is one of the most difficult cancer types to treat, due to lack of treatment targets. This often leads to treatment failure in TNBC patients, with drug resistance being a common occurrence, contributing to high death rates. TNBC is classified based on its lack of expression of common receptors such as the estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2, which are commonly expressed in other cancer subtypes.

“Characteristically, TNBC is known as an aggressive cancer with high metastatic potential (spreading of cancer), resulting in a poor prognosis for these patients. The current prescribed therapies for TNBC, entails multidrug combination systemic therapy including chemotherapeutic agents such as doxorubicin and cisplatin as adjuvant therapy. However, despite these therapeutic interventions, drug resistance is a common occurrence,” says Dr Abrahams.

The best available preclinical cell-based models should be used

For effective drug treatments to be developed for TNBC therapeutics, he continues, the best available disease models should be used to not only improve our understanding of the disease physiology and its numerous mechanisms involved in chemotherapeutic resistance development but also to provide accurate results when determining how safe and effective newly developed drugs are, before they may be considered for further development and testing on humans.

According to him, in preclinical cancer research the conventional methods employed to study disease mechanisms, drug action and drug resistance is ineffective. Firstly, the traditionally used preclinical 2-dimensional (2-D) cell culture models do not accurately recapitulate the architectural biology observed in vivo, second, the drug responses assessed in these models may provide inaccurate results and limit its translational potential, explains Dr Abrahams. Thus, more advanced cell-based models such as 3-dimensional (3-D) spheroids and organoids to name a few, should be considered as alternatives.

The UFS research team, in collaboration with the Centre of Excellence for Pharmaceutical Sciences (Pharmacen™) at the North-West University (NWU), recently took the undertaking to establish two triple negative breast cancer 3-D spheroid models, using the clinostat rotating bioreactor ClinoStar™ system, designed by CelVivo in Denmark. The project is funded by the National Research Foundation.

The ClinoStar™ system promotes the self-aggregation of single cells, and natural formation of 3-D spheroids, through slow rotation within a cell growth chamber known as an incubator. There are various techniques and methods available to develop spheroids and organoids, however the ClinoStar™ systems allow for the development of metabolically stable spheroids, over a longer period of time, as opposed to other methods. It also eliminates the sheer-stress conditions that are normally encountered when using 2-D cell culture models.

“We successfully established one chemotherapeutic-sensitive triple negative breast cancer spheroid model and one novel cisplatin-resistant triple negative breast cancer spheroid model. The chemo-sensitive TNBC spheroid model was evaluated for responsiveness against two clinically used chemotherapeutic agents, doxorubicin and cisplatin. We suggest that this model may be useful to screen novel compounds including traditionally used phytomedicinal material for anticancer activity.

“In our second model, the cisplatin-resistant TNBC spheroid model was also exposed to cisplatin and doxorubicin and demonstrated a resistant response in terms of growth and viability. We believe that this model may be useful to further explore drug resistance mechanisms and may also be used as a tool to assess the drug reversal potential of novel compounds. The value and impact of these models lies in that they may offer predictive drug responses that are closer to that observed in in vivo (animals), as opposed to 2-D cell cultures. This however needs to be assessed. We are currently in the process to fully characterise these spheroids models.”

Aim of the research

Dr Abrahams explains their research aims to merge the gap between conventionally used 2-D cell models and in vivo models, by providing a model that is physiologically more accurate in mimicking the in vivo conditions and complex pathways associated with drug resistance, which is otherwise not observed or accurately expressed in 2D models. “Although our research is preclinical and considered fundamental basic research, the translational potential of our spheroid models may provide options for exploring and testing alternative drugs that may be considered for translational research,” Dr Abrahams says.

Characterising other advanced cell-based cancer models

The team is currently in the process of further characterising the TNBC spheroid model based on protein and genetic expression profiles to elucidate potential therapeutic biomarkers for drug treatment as well as screening various phytomedicinal plants, to assess their antiproliferative and drug-resistance reversal potential. In addition, the researchers recently commenced a new research project that aims to develop a drug-resistant prostate cancer spheroid model using the Clinostar™ system with their collaborators at the NWU.

Advanced cell-based model research is still relatively ‘new’ in South Africa and Africa, compared to the global North. As a result, says Dr Abrahams, their NWU collaborators together with other stakeholders, initiated the establishment of the Society for Advanced Cell Culture Modelling for Africa (SACCMA) in 2021, which aims to develop the fields of advanced cell modelling, three-dimensional (3D) cell cultures, 3D bioprinting and stem cell research, in Africa. Our current inter-departmental  collaboration include researchers from the Pharmacology department, but we hope to build and expand our collaboration network in the near future.

News Archive

UFS receives R13,7 Million for Research into Prehistoric Organisms
2007-03-27

Some of the guests attending the launch of the research contract are: Dr Siyabulela Ntutela (Deputy Director: Biotechnology at the Department of Science and Technology), Dr Godfrey Netswera (Manager of Thuthuka and the Support Programme at the National Research Foundation (NRF)), Dr Esta van Heerden (Platform Manager and lecturer at the Department of Microbial, Biochemical and Food Biotechnology at the UFS), Mr Butana Mboniswa (Chief Executive Officer of BioPAD), and Mr Vuyisele Phehani (Portfolio Manager for BioPAD).
Photo: Leonie Bolleurs

The University of the Free State (UFS) has been awarded a massive R13,7 million contract to conduct research into prehistoric micro-organisms which live under extreme conditions, for example in mineshafts.

This is one of the biggest research contracts awarded to the UFS in recent years.

The biotechnology research contract was awarded to the UFS by BioPAD, a South African biotechnology company that brokers partnerships between researchers, entrepreneurs, business, government and other stakeholders to promote innovation and create sustainable biotechnology businesses.

The project is endorsed by the Department of Science and Technology and the National Research Foundation (NRF), which contributes to the bursaries of the 17 postgraduate students on the programme.

The contract involves the establishment of a Platform for Metagenomics -  a technique which allows researchers to extract the DNA from microbes in their natural environment and investigate it in a laboratory. 

“Through this platform we will be able to understand deepmine microbial populations
and their potential application in the search for life in outer space.  It is most likely
that, if life were to be found on other planets in our solar system, it would probably
resemble that which existed millions of years ago on earth.  Apart from all this, these
organisms have unique properties one can exploit in biotechnological application for
South Africa and its community,” said Dr Esta van Heerden, platform manager and
lecturer at the UFS Department of Microbial, Biochemical and Food Biotechnology.
She is assisted by her collegues, Prof. Derek Litthauer and Dr Lizelle Piater.

“The platform aims to tap into the unique genetic material in South African mines
which will lead to the discovery of new genes and their products.  These new and unique products will find application in the medical field (anti-cancer, anti-bacterial en anti-viral cures), the industrial sector (nanotechnology, commercial washing agents and the food industry), environmental sector (pollution management, demolition of harmful metals and other toxic waste),” said Dr Van Heerden.

According to Dr Van Heerden, the Metagenomics Platforms stems from the Life in
Extreme Environments (LExEN) programme which was started in 1994 by Princeton
University in the United States of America (USA) in South African mines with grants
from among others the National Aeronautics and Space Administration (NASA) and
the National Science Foundation (NSF) in the USA.  Other international collaborators
on the project include Geosynec Consultants Inc. (USA), Oak Ridge National
Laboratory (USA), the University of Tennessee (USA) and in South Africa the
Universities of the Witwatersrand, North West and Limpopo and companies like BHP
Billiton, MINTEK and mining companies like Harmony, Gold Fields and AngloGold
Ashanti.

The research field laboratory of the Metagenomics Platform, which was situated in
Glen Harvey, was moved to the Main Campus of the UFS in Bloemfontein.  “In this
way the university has become the central hub for all research programmes.  We are
also the liaison between the LExEN programme and the various mining companies
involved,” said Dr Van Heerden.  The new laboratory was introduced during the
launch of the research contract.

“Our decision to commit BioPAD to this project stems from the company’s commitment to advance human capacity development to strengthen South Africa’s research infrastructure.  It is also part of our aim to create and protect intellectual property,” said Mr Butana Mboniswa, Chief Executive Officer of BioPAD.

Talking on behalf of the UFS senior management, Prof. Teuns Verschoor, Vice-Rector
of Academic Operations, said that the university shares the excitement to be part of
the exploration of unknown forms of life, the discovery of new genes and
their products and in applying newly gained knowledge to better understand our
universe.

Media release
Issued by: Lacea Loader
Assistant Director: Media Liaison 
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl@ufs.ac.za
27 March 2007

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept