Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 December 2024 | Story André Damons | Photo André Damons
Breast Cancer Research 2024
The research team consist of Dr Beynon Abrahams (left), Viwe Fokazi, MMed.Sci student, and PhD student Songezo Vazi.

In an effort to better understand chemotherapeutic treatment response in triple negative breast cancer (TNBC) – known as an aggressive cancer with high recurrence and high mortality rate in breast cancer patients – researchers from the University of the Free State (UFS) developed a drug-resistant TNBC spheroid model that is physiologically more accurate in displaying the complexities involved in drug-resistance development.

Dr Beynon Abrahams, Lecturer in the Department of Basic Medical Sciences within the UFS Faculty of Health Sciences, says breast cancer remains the most frequently diagnosed cancer in women. It is also the most debilitating type of cancer responsible for the highest cancer mortality rates in women. Though various subtypes of breast cancer exist, TNBC is one that is of particular interest to his research team.

“TNBC is one of the most difficult cancer types to treat, due to lack of treatment targets. This often leads to treatment failure in TNBC patients, with drug resistance being a common occurrence, contributing to high death rates. TNBC is classified based on its lack of expression of common receptors such as the estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2, which are commonly expressed in other cancer subtypes.

“Characteristically, TNBC is known as an aggressive cancer with high metastatic potential (spreading of cancer), resulting in a poor prognosis for these patients. The current prescribed therapies for TNBC, entails multidrug combination systemic therapy including chemotherapeutic agents such as doxorubicin and cisplatin as adjuvant therapy. However, despite these therapeutic interventions, drug resistance is a common occurrence,” says Dr Abrahams.

The best available preclinical cell-based models should be used

For effective drug treatments to be developed for TNBC therapeutics, he continues, the best available disease models should be used to not only improve our understanding of the disease physiology and its numerous mechanisms involved in chemotherapeutic resistance development but also to provide accurate results when determining how safe and effective newly developed drugs are, before they may be considered for further development and testing on humans.

According to him, in preclinical cancer research the conventional methods employed to study disease mechanisms, drug action and drug resistance is ineffective. Firstly, the traditionally used preclinical 2-dimensional (2-D) cell culture models do not accurately recapitulate the architectural biology observed in vivo, second, the drug responses assessed in these models may provide inaccurate results and limit its translational potential, explains Dr Abrahams. Thus, more advanced cell-based models such as 3-dimensional (3-D) spheroids and organoids to name a few, should be considered as alternatives.

The UFS research team, in collaboration with the Centre of Excellence for Pharmaceutical Sciences (Pharmacen™) at the North-West University (NWU), recently took the undertaking to establish two triple negative breast cancer 3-D spheroid models, using the clinostat rotating bioreactor ClinoStar™ system, designed by CelVivo in Denmark. The project is funded by the National Research Foundation.

The ClinoStar™ system promotes the self-aggregation of single cells, and natural formation of 3-D spheroids, through slow rotation within a cell growth chamber known as an incubator. There are various techniques and methods available to develop spheroids and organoids, however the ClinoStar™ systems allow for the development of metabolically stable spheroids, over a longer period of time, as opposed to other methods. It also eliminates the sheer-stress conditions that are normally encountered when using 2-D cell culture models.

“We successfully established one chemotherapeutic-sensitive triple negative breast cancer spheroid model and one novel cisplatin-resistant triple negative breast cancer spheroid model. The chemo-sensitive TNBC spheroid model was evaluated for responsiveness against two clinically used chemotherapeutic agents, doxorubicin and cisplatin. We suggest that this model may be useful to screen novel compounds including traditionally used phytomedicinal material for anticancer activity.

“In our second model, the cisplatin-resistant TNBC spheroid model was also exposed to cisplatin and doxorubicin and demonstrated a resistant response in terms of growth and viability. We believe that this model may be useful to further explore drug resistance mechanisms and may also be used as a tool to assess the drug reversal potential of novel compounds. The value and impact of these models lies in that they may offer predictive drug responses that are closer to that observed in in vivo (animals), as opposed to 2-D cell cultures. This however needs to be assessed. We are currently in the process to fully characterise these spheroids models.”

Aim of the research

Dr Abrahams explains their research aims to merge the gap between conventionally used 2-D cell models and in vivo models, by providing a model that is physiologically more accurate in mimicking the in vivo conditions and complex pathways associated with drug resistance, which is otherwise not observed or accurately expressed in 2D models. “Although our research is preclinical and considered fundamental basic research, the translational potential of our spheroid models may provide options for exploring and testing alternative drugs that may be considered for translational research,” Dr Abrahams says.

Characterising other advanced cell-based cancer models

The team is currently in the process of further characterising the TNBC spheroid model based on protein and genetic expression profiles to elucidate potential therapeutic biomarkers for drug treatment as well as screening various phytomedicinal plants, to assess their antiproliferative and drug-resistance reversal potential. In addition, the researchers recently commenced a new research project that aims to develop a drug-resistant prostate cancer spheroid model using the Clinostar™ system with their collaborators at the NWU.

Advanced cell-based model research is still relatively ‘new’ in South Africa and Africa, compared to the global North. As a result, says Dr Abrahams, their NWU collaborators together with other stakeholders, initiated the establishment of the Society for Advanced Cell Culture Modelling for Africa (SACCMA) in 2021, which aims to develop the fields of advanced cell modelling, three-dimensional (3D) cell cultures, 3D bioprinting and stem cell research, in Africa. Our current inter-departmental  collaboration include researchers from the Pharmacology department, but we hope to build and expand our collaboration network in the near future.

News Archive

Getting out of the dark
2015-04-28

Photo: Leonie Bolleurs

Since 2008, the University of the Free State has been busy with the planning and implementation of projects to reduce the impact of load shedding. To date,  the cost of these projects has run to R6 million. They have been done primarily to ensure that the academic programme does not suffer damage as a result of the increasing interruptions in the power supply that are continuing this year.

The university’s greatest concern has been the provision of emergency power to the lecture halls and laboratories.

Thus far, 35 generators are servicing 55 buildings on the three campuses of the UFS. This includes 26 generators on the Bloemfontein Campus, eight on the Qwaqwa Campus in the Eastern Free State, and one generator on the South Campus in Bloemfontein. The generators are already in service, and are maintained in working order.

Since 2010, the university has also ensured that all newly-built academic buildings are equipped with emergency power supplies.

On the South Campus in Bloemfontein, the new lecture-hall building and the computer laboratory are equipped with emergency power, while the installation of emergency generators in other buildings is under way. The majority of the buildings on the Qwaqwa Campus in the Eastern Free State are equipped with emergency power supplies.

In the meantime, the UFS management has approved a further R11 million for the installation of additional generators on the three campuses. A further R1.5 million has also been approved for the purchase of two mobile generators.

To extend the work already done, the main task will be the installation of more generators on the Bloemfontein Campus to ensure that lecture halls with emergency power will be available for the centrally-arranged timetables, and to ensure that more of the critical laboratories will be provided with emergency power.

There are still  some important buildings and halls on the Bloemfontein Campus that must be supplied with emergency power. However, it is a costly process and must be brought into operation gradually. The further implementation of emergency power depends on the delivery of equipment. The university is also investigating alternative solutions for power provisioning, including solar power.

Generators with spare capacity are optimally deployed to satisfy the lower needs of the campus, including the Odeion, the ANNEX at Microbiology, the Stabilis ANNEX, the Agriculture Building, the UV-Sasol library, and the Francois Retief Building.

In addition, the UFS  is busy on all campuses, coupling area lighting, including

street lights and pedestrian walkways, to existing generators. Procedures for the operation of mechanical equipment, such as entrance gates, lifts, and so on, are currently being dealt with on all campuses. Continuous power sources for certain ICT equipment will be installed on all campuses to protect it against power surges.

Staff and students can also equip themselves with the necessary knowledge to manage load shedding in their specific areas of work and study. It is always helpful to know who to contact. The following list with guidelines and contact numbers has been compiled to assist you:

1. In an emergency, call Protection Services. This line will continue to operate, regardless of whether the power is on or off.
2. Avoid using lifts just before planned load shedding. Some lifts have emergency power packs which will bring the lift to the nearest floor and open the doors. If you still get stuck in a lift during a power outage, use your cellphone to call Protection Services. While you're waiting, stay calm and be patient.
3. If the access control systems in your building stop working after load shedding, contact Protection Services.
4. The students and staff members who are most at risk during load shedding are those in wheelchairs or with other mobility limitations. As far as possible, plan ahead to avoid being stuck on a floor or in a room that is difficult to access when load shedding is imminent. Please contact Protection Services if you need assistance.
5. During a fire, alarms WILL go off. Alarms are not power driven, but battery driven. For assistance, contact Protection Services.
6. The main UFS Switchboard (Bloemfontein Campus +27(0)51 401 9111 and Qwaqwa Campus +27(0)58 718 5000) will continue to operate during load shedding.

Contact details of Protection Services:

  • Bloemfontein Campus: +27(0)51 401 2634/2911
  • Qwaqwa Campus: +27(0)58 508 5460/5175
  • South Campus: +27(0)51 5051217

Communication and Brand Management will make information available on the UFS web, Facebook page, Twitter, Blackboard and the intranet. Get the load shedding schedule from Eskom’s webpage (http://loadshedding.eskom.co.za/). The Bloemfontein Campus falls in group 4 and the South Campus falls in group 2 in Centlec’s load shedding schedule.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept