Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 December 2024 | Story André Damons | Photo André Damons
Breast Cancer Research 2024
The research team consist of Dr Beynon Abrahams (left), Viwe Fokazi, MMed.Sci student, and PhD student Songezo Vazi.

In an effort to better understand chemotherapeutic treatment response in triple negative breast cancer (TNBC) – known as an aggressive cancer with high recurrence and high mortality rate in breast cancer patients – researchers from the University of the Free State (UFS) developed a drug-resistant TNBC spheroid model that is physiologically more accurate in displaying the complexities involved in drug-resistance development.

Dr Beynon Abrahams, Lecturer in the Department of Basic Medical Sciences within the UFS Faculty of Health Sciences, says breast cancer remains the most frequently diagnosed cancer in women. It is also the most debilitating type of cancer responsible for the highest cancer mortality rates in women. Though various subtypes of breast cancer exist, TNBC is one that is of particular interest to his research team.

“TNBC is one of the most difficult cancer types to treat, due to lack of treatment targets. This often leads to treatment failure in TNBC patients, with drug resistance being a common occurrence, contributing to high death rates. TNBC is classified based on its lack of expression of common receptors such as the estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2, which are commonly expressed in other cancer subtypes.

“Characteristically, TNBC is known as an aggressive cancer with high metastatic potential (spreading of cancer), resulting in a poor prognosis for these patients. The current prescribed therapies for TNBC, entails multidrug combination systemic therapy including chemotherapeutic agents such as doxorubicin and cisplatin as adjuvant therapy. However, despite these therapeutic interventions, drug resistance is a common occurrence,” says Dr Abrahams.

The best available preclinical cell-based models should be used

For effective drug treatments to be developed for TNBC therapeutics, he continues, the best available disease models should be used to not only improve our understanding of the disease physiology and its numerous mechanisms involved in chemotherapeutic resistance development but also to provide accurate results when determining how safe and effective newly developed drugs are, before they may be considered for further development and testing on humans.

According to him, in preclinical cancer research the conventional methods employed to study disease mechanisms, drug action and drug resistance is ineffective. Firstly, the traditionally used preclinical 2-dimensional (2-D) cell culture models do not accurately recapitulate the architectural biology observed in vivo, second, the drug responses assessed in these models may provide inaccurate results and limit its translational potential, explains Dr Abrahams. Thus, more advanced cell-based models such as 3-dimensional (3-D) spheroids and organoids to name a few, should be considered as alternatives.

The UFS research team, in collaboration with the Centre of Excellence for Pharmaceutical Sciences (Pharmacen™) at the North-West University (NWU), recently took the undertaking to establish two triple negative breast cancer 3-D spheroid models, using the clinostat rotating bioreactor ClinoStar™ system, designed by CelVivo in Denmark. The project is funded by the National Research Foundation.

The ClinoStar™ system promotes the self-aggregation of single cells, and natural formation of 3-D spheroids, through slow rotation within a cell growth chamber known as an incubator. There are various techniques and methods available to develop spheroids and organoids, however the ClinoStar™ systems allow for the development of metabolically stable spheroids, over a longer period of time, as opposed to other methods. It also eliminates the sheer-stress conditions that are normally encountered when using 2-D cell culture models.

“We successfully established one chemotherapeutic-sensitive triple negative breast cancer spheroid model and one novel cisplatin-resistant triple negative breast cancer spheroid model. The chemo-sensitive TNBC spheroid model was evaluated for responsiveness against two clinically used chemotherapeutic agents, doxorubicin and cisplatin. We suggest that this model may be useful to screen novel compounds including traditionally used phytomedicinal material for anticancer activity.

“In our second model, the cisplatin-resistant TNBC spheroid model was also exposed to cisplatin and doxorubicin and demonstrated a resistant response in terms of growth and viability. We believe that this model may be useful to further explore drug resistance mechanisms and may also be used as a tool to assess the drug reversal potential of novel compounds. The value and impact of these models lies in that they may offer predictive drug responses that are closer to that observed in in vivo (animals), as opposed to 2-D cell cultures. This however needs to be assessed. We are currently in the process to fully characterise these spheroids models.”

Aim of the research

Dr Abrahams explains their research aims to merge the gap between conventionally used 2-D cell models and in vivo models, by providing a model that is physiologically more accurate in mimicking the in vivo conditions and complex pathways associated with drug resistance, which is otherwise not observed or accurately expressed in 2D models. “Although our research is preclinical and considered fundamental basic research, the translational potential of our spheroid models may provide options for exploring and testing alternative drugs that may be considered for translational research,” Dr Abrahams says.

Characterising other advanced cell-based cancer models

The team is currently in the process of further characterising the TNBC spheroid model based on protein and genetic expression profiles to elucidate potential therapeutic biomarkers for drug treatment as well as screening various phytomedicinal plants, to assess their antiproliferative and drug-resistance reversal potential. In addition, the researchers recently commenced a new research project that aims to develop a drug-resistant prostate cancer spheroid model using the Clinostar™ system with their collaborators at the NWU.

Advanced cell-based model research is still relatively ‘new’ in South Africa and Africa, compared to the global North. As a result, says Dr Abrahams, their NWU collaborators together with other stakeholders, initiated the establishment of the Society for Advanced Cell Culture Modelling for Africa (SACCMA) in 2021, which aims to develop the fields of advanced cell modelling, three-dimensional (3D) cell cultures, 3D bioprinting and stem cell research, in Africa. Our current inter-departmental  collaboration include researchers from the Pharmacology department, but we hope to build and expand our collaboration network in the near future.

News Archive

Harvard couple to present lectures on Biostatistics and Mathematics at the UFS
2015-12-07


Professor Donald Rubin

Prof Donald Rubin (John L. Loeb Professor of Statistics at Harvard University) and Elizabeth Zell (MStat - mathematical statistician in the Division of Bacterial Diseases) will visit the University of the Free State (UFS) where they will present lectures on their respective work.

Over his prestigious academic career, Prof Don Rubin’s 400 publications and 13 books have earned him around 180 000 citations at an h-index of 113. He is one of the most cited statisticians/mathematicians/economists/psychologists in the world over the last 10 -15 years. He has supervised 35 PhD candidates as sole-supervisor, 17 more as co-supervisor, with a further eight in the pipeline.

Prof Rubin who will meet with UFS academics in the Department of Mathematics and Actuarial Sciences will also deliver a lecture: Rerandomisation to improve covariate balance in experiments.

Randomised experiments are the “gold standard” for estimating causal effects, yet in practice, chance imbalances often exist in covariate distributions between treatment groups. If covariate data are available before units are exposed to treatments, these chance imbalances can be mitigated by first checking covariate balance before the physical experiment takes place. Provided a precise definition of imbalance has been specified in advance, unbalanced randomisations can be discarded, followed by a rerandomisation. This process can continue until a randomisation yielding balance according to the definition is achieved. By improving covariate balance, rerandomisation provides more precise and trustworthy estimates of treatment effects.

Prof Rubin received an honorary professorship from the Faculty of Natural and Agricultural Sciences at the UFS.


Elizabeth Zell

The lecture will take place on:
Date: Tuesday 8 December 2015
Time: 16:00
Venue: Albert Wessels Auditorium, Bloemfontein Campus

Zell earned her Master’s degree in Statistics at North Carolina State University, and for more than two decades, was an active bio-statistical researcher in various offices of the Centers for Disease Control (CDC). Since 2013, she has been the Principal Statistician and President of Stat-Epi Associates, Inc. Her 150+ publications have earned her 14 500 citations at an h-index of over 50. She is a Fellow of the American Statistical Association, and, in 2010, she received the Statistics Section Government Award for outstanding contributions to statistics and public health by the American Public Health Association. During her career at the CDC, she earned more than 20 CDC research awards and honours.

She will deliver two lectures at the UFS. The first is entitled A Potential Outcomes Approach to Documenting the Public Health Impact of the Introduction of PCV13 for the Prevention of Invasive Pneumococcal Disease. The topic of her second lecture is: Assessing the Effectiveness of Intrapartum Antibiotic Prophylaxis for Prevention of Early-Onset Group B Streptococcus Disease through Propensity Score Design

Elizabeth’s lectures will take place on:
Date: Wednesday 9 December 2015
Time: 10:45 and 13:00
Venue: West Block 111, Bloemfontein Campus

For more information, please contact Dr Michael von Maltitz at VMaltitzMJ@ufs.ac.za.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept