Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 December 2024 | Story André Damons | Photo André Damons
Breast Cancer Research 2024
The research team consist of Dr Beynon Abrahams (left), Viwe Fokazi, MMed.Sci student, and PhD student Songezo Vazi.

In an effort to better understand chemotherapeutic treatment response in triple negative breast cancer (TNBC) – known as an aggressive cancer with high recurrence and high mortality rate in breast cancer patients – researchers from the University of the Free State (UFS) developed a drug-resistant TNBC spheroid model that is physiologically more accurate in displaying the complexities involved in drug-resistance development.

Dr Beynon Abrahams, Lecturer in the Department of Basic Medical Sciences within the UFS Faculty of Health Sciences, says breast cancer remains the most frequently diagnosed cancer in women. It is also the most debilitating type of cancer responsible for the highest cancer mortality rates in women. Though various subtypes of breast cancer exist, TNBC is one that is of particular interest to his research team.

“TNBC is one of the most difficult cancer types to treat, due to lack of treatment targets. This often leads to treatment failure in TNBC patients, with drug resistance being a common occurrence, contributing to high death rates. TNBC is classified based on its lack of expression of common receptors such as the estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2, which are commonly expressed in other cancer subtypes.

“Characteristically, TNBC is known as an aggressive cancer with high metastatic potential (spreading of cancer), resulting in a poor prognosis for these patients. The current prescribed therapies for TNBC, entails multidrug combination systemic therapy including chemotherapeutic agents such as doxorubicin and cisplatin as adjuvant therapy. However, despite these therapeutic interventions, drug resistance is a common occurrence,” says Dr Abrahams.

The best available preclinical cell-based models should be used

For effective drug treatments to be developed for TNBC therapeutics, he continues, the best available disease models should be used to not only improve our understanding of the disease physiology and its numerous mechanisms involved in chemotherapeutic resistance development but also to provide accurate results when determining how safe and effective newly developed drugs are, before they may be considered for further development and testing on humans.

According to him, in preclinical cancer research the conventional methods employed to study disease mechanisms, drug action and drug resistance is ineffective. Firstly, the traditionally used preclinical 2-dimensional (2-D) cell culture models do not accurately recapitulate the architectural biology observed in vivo, second, the drug responses assessed in these models may provide inaccurate results and limit its translational potential, explains Dr Abrahams. Thus, more advanced cell-based models such as 3-dimensional (3-D) spheroids and organoids to name a few, should be considered as alternatives.

The UFS research team, in collaboration with the Centre of Excellence for Pharmaceutical Sciences (Pharmacen™) at the North-West University (NWU), recently took the undertaking to establish two triple negative breast cancer 3-D spheroid models, using the clinostat rotating bioreactor ClinoStar™ system, designed by CelVivo in Denmark. The project is funded by the National Research Foundation.

The ClinoStar™ system promotes the self-aggregation of single cells, and natural formation of 3-D spheroids, through slow rotation within a cell growth chamber known as an incubator. There are various techniques and methods available to develop spheroids and organoids, however the ClinoStar™ systems allow for the development of metabolically stable spheroids, over a longer period of time, as opposed to other methods. It also eliminates the sheer-stress conditions that are normally encountered when using 2-D cell culture models.

“We successfully established one chemotherapeutic-sensitive triple negative breast cancer spheroid model and one novel cisplatin-resistant triple negative breast cancer spheroid model. The chemo-sensitive TNBC spheroid model was evaluated for responsiveness against two clinically used chemotherapeutic agents, doxorubicin and cisplatin. We suggest that this model may be useful to screen novel compounds including traditionally used phytomedicinal material for anticancer activity.

“In our second model, the cisplatin-resistant TNBC spheroid model was also exposed to cisplatin and doxorubicin and demonstrated a resistant response in terms of growth and viability. We believe that this model may be useful to further explore drug resistance mechanisms and may also be used as a tool to assess the drug reversal potential of novel compounds. The value and impact of these models lies in that they may offer predictive drug responses that are closer to that observed in in vivo (animals), as opposed to 2-D cell cultures. This however needs to be assessed. We are currently in the process to fully characterise these spheroids models.”

Aim of the research

Dr Abrahams explains their research aims to merge the gap between conventionally used 2-D cell models and in vivo models, by providing a model that is physiologically more accurate in mimicking the in vivo conditions and complex pathways associated with drug resistance, which is otherwise not observed or accurately expressed in 2D models. “Although our research is preclinical and considered fundamental basic research, the translational potential of our spheroid models may provide options for exploring and testing alternative drugs that may be considered for translational research,” Dr Abrahams says.

Characterising other advanced cell-based cancer models

The team is currently in the process of further characterising the TNBC spheroid model based on protein and genetic expression profiles to elucidate potential therapeutic biomarkers for drug treatment as well as screening various phytomedicinal plants, to assess their antiproliferative and drug-resistance reversal potential. In addition, the researchers recently commenced a new research project that aims to develop a drug-resistant prostate cancer spheroid model using the Clinostar™ system with their collaborators at the NWU.

Advanced cell-based model research is still relatively ‘new’ in South Africa and Africa, compared to the global North. As a result, says Dr Abrahams, their NWU collaborators together with other stakeholders, initiated the establishment of the Society for Advanced Cell Culture Modelling for Africa (SACCMA) in 2021, which aims to develop the fields of advanced cell modelling, three-dimensional (3D) cell cultures, 3D bioprinting and stem cell research, in Africa. Our current inter-departmental  collaboration include researchers from the Pharmacology department, but we hope to build and expand our collaboration network in the near future.

News Archive

Centre to enhance excellence in agriculture
2008-05-09

 

At the launch of the Centre for Excellence were, from the left, front: Ms Lesego Sejosengoe, Manager: Indigenous Food, Mangaung-University Community Partnership Project (MUCPP), Ms Kefuoe Mohapeloa, Deputy Director: national Department of Agriculture; back: Mr Garfield Whitebooi, Assistant Director: national Department of Agriculture, Dr Wimpie Nell, Director: Centre for Agricultural Management at the UFS, and Mr Petso Mokhatla, from the Centre for Agricultural Management and co-ordinator of the Excellence Model.
Photo: Leonie Bolleurs

UFS centre to enhance excellence in agriculture

The national Department of Agriculture (DoA) appointed the Centre for Agricultural Management within the Department of Agricultural Economics at the University of the Free State (UFS) as the centre of excellence to roll out the excellence model for small, medium and micro enterprises (SMME’s) for farmers in the Free State.

The centre was launched this week on the university’s Main Campus in Bloemfontein.

The excellence model, which is used worldwide, was adapted by the Department of Trade and Industry as an SMME Excellence Model. The DoA then adapted it for agricultural purposes.

“The excellence model aims to assist farmers in identifying gaps in business skills. These gaps will be addressed by means of short courses. It will help to close the gap between the 1st and 4th economy,” said Dr Wimpie Nell, Director of the Centre for Agricultural Management at the UFS.

The UFS – as co-ordinator of the SMME Excellence Model – the DoA, the private sector, municipalities, small enterprise development agencies, and non-governmental organisations will be working together to enhance excellence in agricultural businesses in the Free State.

The benefit of the model is that it changes the mindset of emerging farmers to see agriculture as a business and not as a way of living. Dr Nell said: “We also want to create a culture of competitiveness and sustainability amongst emerging farmers.”

“The Free State is the second province where the model has been implemented. Another four provinces will follow later this year. Altogether 23 officers from the DoA, NGO’s and private sector have already been trained as facilitators by the Centre of Excellence at the UFS,” said Dr Nell.

The facilitator training takes place during four contact sessions, which includes farm visits where facilitators get the opportunity to practically apply what they have learnt. On completion of the training facilitators use the excellence model to evaluate farming businesses and identify which skills (such as financial skills, entrepreneurship, etc.) the farmers need.

The co-ordinator from the Centre of Excellence, Mr Petso Mokhatla, will monitor the facilitators by visiting these farmers to establish the effectiveness of the implementation of the model. Facilitators must also report back to the centre on the progress of the farmers. This is an ongoing process where evaluation will be followed up by training and re-evaluation to ensure that successful establishment of emerging farmers has been achieved.

According to Ms Kefuoe Mohapeloa, Deputy Director from the national Department of Agriculture, one of the aims of government is to redistribute five million hectare of land (480 settled people per month) to previously disadvantaged individuals before 2010. The department also wants to increase black entrepreneurship in rural areas by 10% this year, increase food security by utilising scarce resources by 10%, and increase exports by black farmers by 10%.

“To fulfill these objectives it is very important for emerging farmers to get equipped with the necessary business skills. The UFS was a suitable candidate for this partnership because of its presence in the Accelerated and Shared Growth Initiative of South Africa (ASGISA). With the Jobs for Growth programme, ASGISA is an important extension to the Centre of Excellence and plays a major role in the implementation of the model to improve value-chain management,” said Ms Mohapeloa.

Twenty facilitators will receive training in June and another 20 in October this year. “The more facilitators we can train, the more farmers will benefit from the model,” said Dr Nell.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
8 May 2008

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept