Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 December 2024 | Story Dr Cindé Greyling | Photo Kaleidoscope
MACE Winners 2024
From left to right: Burneline Kaars (Head: Employee Wellness and Organisational Development), Dr WP Wahl (Student Life Director), Linda Greyling (Senior Officer: Special Projects, Student Recruitment Services), Gerben Van Niekerk (Senior Officer: Kovsie Support Services), Malia Maranyane (Senior Officer: Undergraduate Marketing, Student Recruitment Services), Nomonde Mbadi (Student Recruitment Services Director), and Susan Van Jaarsveld (Senior Director: Human Resources).

On 28 November 2024, the University of the Free State (UFS) did it again – reigned as champions at the annual Marketing, Advancement and Communication in Education (MACE) Excellence Awards and walking away with two of the top awards: the MACE Award for Outstanding Research and the Severus Cerff Award for Consistent Excellence.

KovsieX was named the overall winner of the MACE Award for Outstanding Research. This award is made to the entry with the highest score in research, clearly demonstrating how research has supported the strategic objectives of the institution and the project. KovsieX is a multiplatform approach designed to leverage the strengths of diverse media channels. This digitalisation aligns with Vision 130, leveraging emerging technologies to enhance teaching and learning quality and efficiency of non-academic support structures and systems.

The UFS’ entries were of such high quality that the university won the sought-after Severus Cerff Award for Consistent Excellence. This award is based on the number of entries entered by an institution and the number and level of those entries winning awards. The award is therefore made to the institution with the highest success ratio.

Furthermore, the UFS Matriculant of the Year event received a Silver Award – entries scoring 5.75 or higher earn a Silver Award, placing this event among some of the top achievers in the events category. Three UFS entries received Gold Awards and were the winners in their respective categories: KovsieChat (Digital Channels), 2024 Women’s Day Breakfast (Events), and KovsieX (Stakeholder Engagement Campaigns). This is a magnificent achievement for the UFS.

"Winning a MACE award at this early stage is proof that KovsieX is not just meeting national standards – it’s setting them. If we can achieve this level of excellence now, imagine how we’ll compete on the global stage when the project is fully realised,” says Gerben van Niekerk, Student Media Manager.

Lacea Loader, Senior Director: Communication and Marketing and Coordinator of the MACE Excellence Awards, explained that a record number of entries were received for the Excellence Awards this year. “We are ecstatic about the direction of communication at the UFS and that the university has been able to maintain the quality of its entries in recent years,” says Loader.

The MACE Excellence Awards takes place annually as part of the MACE National Conference, recognising and celebrating excellence and the achievements of specialists and practitioners in marketing, advancement, and communication in the higher-education sector. This year, the Cape Peninsula University of Technology (CPUT) hosted the conference from 27 to 28 November 2024.

In 2023, the UFS won 11 awards, including the Chairperson’s Award of Excellence. 

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept