Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 February 2024 | Story Lunga Luthuli | Photo SUPPLIED
Student Campus Tour
The UFS Division of Student Affairs is helping first-time students get their bearings by offering campus tours on the Bloemfontein, South, and Qwaqwa campuses.

The University of the Free State’s (UFS’s) Division of Student Affairs is ready to welcome 2024’s first-time entering students (FTENS) for the new academic year with an engaging campus tour. 

These tours will take place on the Bloemfontein and South Campuses from 5 to 8 February starting at 12:00, and on the Qwaqwa Campus from 12 to 15 February, with one tour daily, from 14:00. Students must note that the 5 to 8 February schedule aligns with specific colleges each day, which means you should attend on the day specified below for students from your college.

The comprehensive tour route covers vital campus locations, including Protection Services, the Administration buildings, examination venues, Kovsie Health, Student Counselling and Development, Arts and Culture, Callie Human, HMS, Main Building, and many more. The itinerary helps students become familiar with significant facilities on the three UFS campuses.

The Division of Student Affairs aims to make the campus tours even more inclusive by allowing commuter students and late registrants to join a later group of tours, on 12 and 14 February on the Bloemfontein Campus.

Campus Tours

Tour guide

ROUTE: 


Main locations: 

Bloemfontein Campus:
Meet at the Kovsie Village (i.e. the tent next to the EXR registration venue)-> Protection Services (Stopping Point) -> George du Toit -> EXR -> Kovsie Health; SCD; Food Environment Office; Arts and Culture -> Callie Human -> HMS -> Main Building -> ECLA Lab -> Vishuis -> 24-hour study labs -> Stabilis -> Bridge (Bank; Van Schaik) -> FGG -> EBW -> Landbou; Visitors Gate-> Kopanong; Genmin Lectorium -> Computer Lab -> Mabaleng Auditorium -> Winkie Direko (Fundza Offices) -> Ned Education Building -> Modlec; Konica Minolta -> Library (organise in faculty).



South Campus Tour:

Dates: 6 and 8 February 2024
Time: 12:00 
Starting point: Amphitheatre (Outside the cafeteria)

Qwaqwa Campus Tour:

Date: 12 February 2024             
Time: 14:00 (Faculty of Economic and Management Sciences)
Assembly point: Amphitheatre

Date: 13 February 2024             
First time slot: 14:00 (Faculty of Natural and Agricultural Sciences)
Assembly point: Amphitheatre

Date: 14 February 2024
First time slot: 14:00 (Faculty of Education)
Assembly point: Amphitheatre

Date: 15 February 2024             
First time slot: 14:00 (Faculty of the Humanities)
Assembly point: Amphitheatre

Qwaqwa Off Campus Tour

Date: 18 February 2024
Time: 08:00
Assembly point: Amphitheatre

To register for the campus tours, please click here

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept