Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 February 2024 | Story André Damons | Photo SUPPLIED
Prof Robert Bragg
Prof Robert Bragg is a researcher in the Department of Microbiology and Biochemistry at the University of the Free State (UFS) and believes hospital-acquired infections (HAIs) might already be “Disease X”.

During the World Governments Summit, the World Health Organisation (WHO) warned world leaders about the likelihood of a Disease X outbreak, saying it is “a matter of when, not if” a new pathogen and pandemic will strike. If there is an outbreak of this disease tomorrow, the world still would not be ready. 

During his speech earlier this month at the summit in Dubai, Tedros Adhanom Ghebreyesus, Director-General of the WHO, said COVID-19 was a Disease X – a new pathogen causing a new disease. He said: “There will be another Disease X, or a Disease Y or a Disease Z. And as things stand, the world remains unprepared for the next Disease X, and the next pandemic. If it struck tomorrow, we would face many of the same problems we faced with COVID-19.”

Though Disease X is a hypothetical placeholder representing yet-to-be-encountered pathogens, Prof Robert Bragg, researcher in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), believes hospital-acquired infections (HAI) might already be “Disease X”. He says data shows that deaths from HAIs will become the leading cause of human deaths. This problem is rapidly growing as most of the pathogens which people contract while in hospital are now resistant to antibiotics, making them very difficult to treat.  

Prof Bragg, whose main research is in disease-control, first in the agricultural industry, and now human health, also previously warned about a disease that would make COVID-19, which killed more than seven million people to date globally, look like a dress rehearsal. His PhD student, Samantha Mc Carlie, investigating how bacteria become resistant to disinfectant and sanitiser products. This is a serious problem for the future, as disinfection could be our last line of defence.

Heading for a crisis in health care

“The world is rapidly heading for a crisis in health care regarding hospital-acquired infections. It is common knowledge that we are quickly running out of antibiotics (and antifungals) to treat bacterial and yeast infections. Without antibiotics and antifungals, the outcome of many of these bacterial and yeast hospital-acquired infections will be very severe. They will, unfortunately, in many cases, result in the death of the patient,” says Prof Bragg. 

According to him, the WHO suggests that 30% of patients in ICUs in developed countries and 70% in underdeveloped countries will contract a HAI. Of these, the mortality rate can be as high as 70%. 

“Most of these infections are caused by multiple drug resistance strains of bacteria such as Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter species. Additional bacteria and yeast, which can also cause HAIs, such as Serratia species, are also becoming a concern due to their intrinsic higher levels of disinfectant resistance.”

Prof Bragg explains that in 2014, a high-profile review was first published, commissioned by the UK Prime Minister, entitled, “Antimicrobial Resistance: Tackling a crisis for the Health and Wealth of Nations” (the AMR Review). This review estimated that antimicrobial resistance (AMR) could cause 10 million deaths annually by 2050 (The Review on Antimicrobial Resistance 2016). This is the same number of deaths caused by cancer today, making AMR the leading cause of human mortality by 2050. When it was finalised, this report was highly criticised as an over-dramatisation, as when this prediction was made, the number of mortalities related to HAIs was around 700 000 – a very long way off 10 000 000. However, according to recent estimates, five years later, in 2019, 1.27 million deaths were directly attributed to drug-resistant infections globally, and this had reached 4.95 million deaths associated with bacterial AMR (including those directly attributable to AMR) by 2022 (Murray et al. 2022). 

The overuse of disinfectants during the COVID-19 pandemic, according to Prof Bragg and Mc Calie, has contributed to the crisis by fostering resistant strains and contaminating environments. Based on the current trajectory of mortalities, the 10 million mark will be reached way before 2050.

Need for a paradigm shift

The researchers say an urgent need to change the paradigm in medicine from “treatment” to “prevention” is necessary and that the old saying ‘prevention is better than cure’ has never been truer. 

According to Bragg: “The golden era of antibiotics is rapidly coming to an end. It is highly unlikely that we will discover new antibiotics, and even if we do, the likelihood that the bacteria will already have or will be able to develop resistance in a very short time is highly likely. 

“We need to think of what happed with quinolones, where we thought we had won the war with a groundbreaking new antimicrobial agent. The bacteria did not have millions of years of evolution to develop resistance to quinolone, yet in only three years, the first resistant bacteria were isolated. There is currently great excitement around AI-derived new antibiotics. However, the end result is likely to be the same. We need an alternative to treatment – in other words, a paradigm shift.” 

Improved biosecurity 

Prof Bragg says highly improved biosecurity is the only viable option for disease control in a post-antibiotic era. By using good biosecurity in poultry production, he says the mortality rates were reduced by 50%. 

Research has shown a direct link between the environmental microbial load in a hospital and HAIs; with a lower microbial load linked to lower incidence of HAIs including C. difficile infections (Boyce et al. 2008; Suleyman et al. 2018; Umemura et al., 2022). Therefore, the new paradigm is to reduce microbial contamination in the hospital environment to prevent HAIs. If there are fewer dangerous microorganisms in an environment, patient and staff exposure to these microorganisms will decrease, reducing the level of HAIs for staff and patients. However, to reduce the microbial loads in healthcare settings, effective cleaning and disinfection products need to be used. 

News Archive

Winning culture helps Kovsies Tennis team claim ninth gold
2015-12-09


Ruben Kruger of the University of the Free State in action at the 2015 USSA tournament in Cape Town.
Photo: Janine de Kock

A winning culture in the Kovsies Tennis Team, combined with good planning, contributed to the University of the Free State (UFS) USSA success recipe.

This is what Janine Erasmus, one of the team's captains, had to say.

According to her, this is why the UFS were able to handle the pressure of being the favourite so well, and this is what helped her team to achieve a ninth consecutive gold medal in Cape Town on 4 December 2015.

This was the sixth year in a row that the UFS triumphed in the combined USSA format since its inception in 2010. In 2007 and 2008, its Women's team won gold, and in 2009, it was the Men's team.

Erasmus was full of praise for the Kovsie coach, Marnus Kleinhans, and Janine de Kock, manager of KovsieTennis.

“We had a build-up of a few months to the USSA tournament, and they (Kleinhans and De Kock) already knew exactly what to do,” she said.

Erasmus, who won a third gold medal, believes her team had great depth this year.

Four in select squad

Kovsies and Maties played in the USSA Tennis Finals for a fourth consecutive year.

Erasmus and her team beat the Stellenbosch team 7 - 3 on 4 December 2015, after they defeated Tukkies 8 - 0 in their semi-final.

 

Mareli Bojé is one of four tennis players of the University of the Free State included in a 2015 USSA tournament team.
Photo: Janine de Kock

Arné Nel, Cornelius Rall, Duke Munro, and Mareli Bojé are the four Kovsies included in the USSA tournament team.

Nel, the other captain from the UFS, won all his matches for the third successive year. Munro won a gold medal at USSA for the seventh year in a row.

Gold for Table Tennis


Three UFS sports teams made it to the USSA finals, all against Maties. The tennis and men's table tennis teams were both winners, but the Sevens rugby team got stuck.

The Kovsie table tennis team beat Maties 3 - 1 in Kimberley.

Silver for Sevens rugby

The Kovsie Sevens rugby team, third at USSA for the past two years, walked away with silver in George on 1 December 2015.

The team was defeated by Maties 10 - 31 in the final. This was after they won 24 - 14 against Pukke in the semi-final, and 28 - 12 against the Central University of Technology in the quarter final.

Tukkies, the 2014 USSA Sevens champions, together with several other teams, did not take part  because the tournament was postponed because of the nationwide student protests.

The Kovsie swimming team took part in the USSA tournament in Johannesburg from 28 November to 30 November 2015.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept