Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 February 2024 | Story André Damons | Photo SUPPLIED
Prof Robert Bragg
Prof Robert Bragg is a researcher in the Department of Microbiology and Biochemistry at the University of the Free State (UFS) and believes hospital-acquired infections (HAIs) might already be “Disease X”.

During the World Governments Summit, the World Health Organisation (WHO) warned world leaders about the likelihood of a Disease X outbreak, saying it is “a matter of when, not if” a new pathogen and pandemic will strike. If there is an outbreak of this disease tomorrow, the world still would not be ready. 

During his speech earlier this month at the summit in Dubai, Tedros Adhanom Ghebreyesus, Director-General of the WHO, said COVID-19 was a Disease X – a new pathogen causing a new disease. He said: “There will be another Disease X, or a Disease Y or a Disease Z. And as things stand, the world remains unprepared for the next Disease X, and the next pandemic. If it struck tomorrow, we would face many of the same problems we faced with COVID-19.”

Though Disease X is a hypothetical placeholder representing yet-to-be-encountered pathogens, Prof Robert Bragg, researcher in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), believes hospital-acquired infections (HAI) might already be “Disease X”. He says data shows that deaths from HAIs will become the leading cause of human deaths. This problem is rapidly growing as most of the pathogens which people contract while in hospital are now resistant to antibiotics, making them very difficult to treat.  

Prof Bragg, whose main research is in disease-control, first in the agricultural industry, and now human health, also previously warned about a disease that would make COVID-19, which killed more than seven million people to date globally, look like a dress rehearsal. His PhD student, Samantha Mc Carlie, investigating how bacteria become resistant to disinfectant and sanitiser products. This is a serious problem for the future, as disinfection could be our last line of defence.

Heading for a crisis in health care

“The world is rapidly heading for a crisis in health care regarding hospital-acquired infections. It is common knowledge that we are quickly running out of antibiotics (and antifungals) to treat bacterial and yeast infections. Without antibiotics and antifungals, the outcome of many of these bacterial and yeast hospital-acquired infections will be very severe. They will, unfortunately, in many cases, result in the death of the patient,” says Prof Bragg. 

According to him, the WHO suggests that 30% of patients in ICUs in developed countries and 70% in underdeveloped countries will contract a HAI. Of these, the mortality rate can be as high as 70%. 

“Most of these infections are caused by multiple drug resistance strains of bacteria such as Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter species. Additional bacteria and yeast, which can also cause HAIs, such as Serratia species, are also becoming a concern due to their intrinsic higher levels of disinfectant resistance.”

Prof Bragg explains that in 2014, a high-profile review was first published, commissioned by the UK Prime Minister, entitled, “Antimicrobial Resistance: Tackling a crisis for the Health and Wealth of Nations” (the AMR Review). This review estimated that antimicrobial resistance (AMR) could cause 10 million deaths annually by 2050 (The Review on Antimicrobial Resistance 2016). This is the same number of deaths caused by cancer today, making AMR the leading cause of human mortality by 2050. When it was finalised, this report was highly criticised as an over-dramatisation, as when this prediction was made, the number of mortalities related to HAIs was around 700 000 – a very long way off 10 000 000. However, according to recent estimates, five years later, in 2019, 1.27 million deaths were directly attributed to drug-resistant infections globally, and this had reached 4.95 million deaths associated with bacterial AMR (including those directly attributable to AMR) by 2022 (Murray et al. 2022). 

The overuse of disinfectants during the COVID-19 pandemic, according to Prof Bragg and Mc Calie, has contributed to the crisis by fostering resistant strains and contaminating environments. Based on the current trajectory of mortalities, the 10 million mark will be reached way before 2050.

Need for a paradigm shift

The researchers say an urgent need to change the paradigm in medicine from “treatment” to “prevention” is necessary and that the old saying ‘prevention is better than cure’ has never been truer. 

According to Bragg: “The golden era of antibiotics is rapidly coming to an end. It is highly unlikely that we will discover new antibiotics, and even if we do, the likelihood that the bacteria will already have or will be able to develop resistance in a very short time is highly likely. 

“We need to think of what happed with quinolones, where we thought we had won the war with a groundbreaking new antimicrobial agent. The bacteria did not have millions of years of evolution to develop resistance to quinolone, yet in only three years, the first resistant bacteria were isolated. There is currently great excitement around AI-derived new antibiotics. However, the end result is likely to be the same. We need an alternative to treatment – in other words, a paradigm shift.” 

Improved biosecurity 

Prof Bragg says highly improved biosecurity is the only viable option for disease control in a post-antibiotic era. By using good biosecurity in poultry production, he says the mortality rates were reduced by 50%. 

Research has shown a direct link between the environmental microbial load in a hospital and HAIs; with a lower microbial load linked to lower incidence of HAIs including C. difficile infections (Boyce et al. 2008; Suleyman et al. 2018; Umemura et al., 2022). Therefore, the new paradigm is to reduce microbial contamination in the hospital environment to prevent HAIs. If there are fewer dangerous microorganisms in an environment, patient and staff exposure to these microorganisms will decrease, reducing the level of HAIs for staff and patients. However, to reduce the microbial loads in healthcare settings, effective cleaning and disinfection products need to be used. 

News Archive

UFS congratulates Free State on matric results
2017-01-05

 Description: 002 IBP Matric results Tags: 002 IBP Matric results

With projects like the Internet Broadcast Project and the
Schools Partnership Projects the UFS helps to improve
education at schools in the Free State.
Photo: iStock

The University of the Free State (UFS) congratulates the Free State and its learners on their outstanding performance in the 2016 matric results. The university, who also plays a role in promoting excellence at school level, is proud of the Free State’s achievement as the best-performing province in the country with a 93,2% pass rate, excluding progressed learners.

“On behalf of the university community I would like to congratulate the Free State MEC of Education, Tate Makgoe, who is also a member of the UFS Council, and the Department of Education in the province on this fine achievement. The UFS is proud to be involved in projects that contribute to the success of the province’s learners. These include the Internet Broadcast Project (IBP) and the Schools Partnership Projects (SPP). The projects help to improve the quality of teaching and help learners to overcome severe domestic conditions in rural areas,” says Prof Nicky Morgan, Acting Vice-Chancellor and Rector of the UFS.

Internet Broadcast Project

The UFS IDEAS Lab in the Department of Open and Distance Learning on the UFS South Campus supports learners in 83 schools through the IBP with the help of academic videos. The project is a collaboration between the university and the Department of Education in the province. It includes support for subjects such as Mathematics, Physical Science, Life Science, Economics, Accounting, and Geography.

A purpose-built school appliance, comprising a projector, speakers, and a PC, is set up at each school, where learners receive video lectures from highly-qualified teachers.

During a function held in Bloemfontein on 5 January 2017 to congratulate performing schools in the province, Mr Makgoe made special mention of the IBP and said that part of the success of the province can be attributed to the project. Many of the top performing schools had learners who participated in the project. One of the districts that forms part of the project, the Xhariep District, was announced as the top performing district in the province, and is second in the country.


Schools Partnership Projects

The SPP focuses on teachers in order to have a more sustainable impact, with 69 schools in the Free State and Eastern Cape being part of it.

It makes use of mentors (30) who assist teachers and headmasters with school management, Mathematics, Physical Science, Accounting, and English as language of learning. The project has an annual budget of more than R15 million – all the funds come from sponsors outside the UFS.

Mentors visit schools and share knowledge, extra material, and technology to improve the standard of teaching. The change has been significant. Matric results and Bachelors pass rates have improved dramatically in these schools.

Another aspect is the identification of learners with potential (so-called first-generation students) to go to university. They are assisted through extra classes and in applying for tertiary education and bursaries.

Many of them currently study at the UFS, and also receive mentorship at university.

Dr Peet Venter, SPP Project Manager, said his team is proud to be part of the process of helping the Free State to become the number one province in the country again.

Both the IBP and SPP was started in 2011 and are managed from the university’s South Campus in Bloemfontein.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept