Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 February 2024 | Story Leonie Bolleurs | Photo SUPPLIED
Action Learning Workshop 2024
Along with Prof Richard Teare (far right) are some of the workshop attendees, which consisted of a group of 15 students, academics, and community organisation leaders.

The Directorate Community Engagement at the University of the Free State (UFS) recently hosted Prof Richard Teare, the President of the Global University of Lifelong Learning (GULL). During his visit, he presented a workshop on action learning.

GULL, established 17 years ago, offers lifelong learning opportunities for people in communities and workplace organisations around the world. It provides frameworks and awards in support of lifelong learning.

Prof Teare described what the process of action learning entails and how it differs from the notion of ‘training’. According to him, action learning occurs when people learn from each other, create their own resources, identify their own problems, and form their own solutions. He stated, “The process is so enriching that every learner is able to identify personal and life-transforming outcomes. These commonly include expressions of enhanced self-confidence, self-belief, renewal, enthusiasm for learning, a new sense of direction and purpose for career and life – along with news skills, insights, and the sense of being equipped for the future.”

The workshop, attended by a group of 15 students, academics, and community organisation leaders, had an element of self-directed development, according to Dr Karen Venter, Head of the Division of Service Learning at the University of the Free State (UFS). “Participants learned how action learning can enable self-directed personal and professional development,” she said.

Skills and leadership characteristics

GULL pathways were also profiled to outline some of the innovative ways in which it can be used to facilitate continuous development aligned with professional certification. It offers three generic pathways, each with five levels (or certification points) leading to professional bachelor’s, master’s, and doctoral degrees,” explained Dr Venter.

“In practice, community leaders who have obtained one of these professional degrees can now become change agents for community development in their own community organisations, using the action learning pathway and certification offered by GULL,” she said.

Dr Venter added that a group of students from the UFS – the Active Community Citizens through Engaged Scholarship for Sustainability (ACCESS) group – embarked on a Professional Bachelor pathway certified by GULL last year. Not only did the group of 11 students successfully earn certification, including one Level Two certificate, five Level Three diplomas, three advanced diplomas, and one bachelor’s degree at the Engaged Scholarship Awards 2023, but they also developed a range of skills and leadership characteristics during the process. These include eco-brick making, vermiculture and gardening, eco-entrepreneurship, soap and candle making, and creative recycling, to name a few. 

Furthermore, the pathway is underpinned by community-based research to drive initiatives of student structures towards implementing impactful community engagement in three clusters, namely sustainable environment, well-being, and social justice.

Addressing SDGs and embracing Vision 130

Lifelong action learning is one of the innovative approaches for the development of graduate attributes. In this light, the outcomes of not only the action learning workshop, but also the learning opportunities presented by GULL, align with the UFS Vision130. “Using action learning for bringing social change, students can address the United Nations Sustainable Development Goals (SDGs) and embrace the values of the UFS’ Vision130 – impact, care, excellence, sustainability, accountability, and social justice,” stated Dr Venter.

One of the attendees communicated the experience as follows: “I learned that action learning is a process for self-determined personal and professional development – the change starts with me developing myself and then sharing it with others.” 

For further opportunities presented by GULL, visit the website here.

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept