Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 February 2024 | Story Leonie Bolleurs | Photo SUPPLIED
Dr Gladys Belle
Dr Gladys Belle is passionate about water research and human health. Her interest in water and health-related research grew due to the health crisis caused by human exposure to contaminated water sources in South Africa.

Beyond the destruction caused by the Coronavirus during the COVID-19 pandemic, it continues to impact not only the lives of many people but also the environment.

Dr Gladys Belle, a postdoctoral researcher in the Centre for Environmental Management at the University of the Free State (UFS), is currently focusing her research on the risk assessment of pharmaceuticals of emerging concern in water resources, specifically concerning human health and aquatic ecosystems. She explains that her research investigates the occurrence, fate, and behaviour of four drugs used during COVID-19 and assesses the risk these drugs pose to human health and the aquatic ecosystem within the Orange-Senqu River Basin.

“I am passionate about water research and more passionate about human health. My interest in water and health-related research grew due to the health crisis caused by human exposure to contaminated water sources in South Africa,” she states.

Dr Belle adds that she wants to raise awareness and shape the behaviour of local communities in South Africa regarding safe disposal methods. Through programmes such as take-back initiatives, the research seeks to reduce the impact of pharmaceuticals on water resources. She states, “My research will also influence the implementation of various preventive measures, including policies regulating the disposal of drugs into the environment. This research may serve as the basis for better sanitation solutions within communities and improving wastewater treatment processes in the country.”

Focusing on women scientists such as Dr Belle, the UFS will be celebrating the United Nations International Day of Women and Girls in Science on 11 February, commemorating women in the field of science and encouraging girls to pursue careers in this field.

A passion for academia and science

From a young age, Dr Belle was deeply enthusiastic about academia, particularly in the field of science. She studied Environmental Sciences at a university in Cameroon, earning her BSc in 2003. Taking a ten-year break, she focused on being a mum and also worked as Biology teacher in Lesotho.

Despite staying away from the university for an extended period, Dr Belle never let go of her passion and vision to one day become a renowned researcher and academic. In 2012, she enrolled for her honours degree in Environmental Health, followed by her master's in 2013, which she passed with distinction. Immediately after, she enrolled for a PhD and successfully graduated in 2021.

She mentions that her PhD journey came with various challenges, balancing responsibilities as a part-time lecturer, a mother, and a wife while pursuing her studies. “Regardless of all those challenges, I never gave up. Instead, they kept me motivated to get going,” she says.

The same year that she obtained her PhD, Dr Belle joined the university as a postdoctoral researcher. “Being a researcher at the UFS has allowed me to advance my research career and provided a platform for me to meet and learn from the gurus in my field,” she comments. Dr Belle considers Prof Paul Oberholster, the Dean of the Faculty of Natural and Agricultural Sciences and her current supervisor, as a true mentor. He not only teaches her the skill of hard work, but he also encourages her to aim high in research. She also expresses great appreciation to the Directorate of Research Development for its support during her research journey, providing her with access to tools and resources to effectively pursue her work as researcher.

As postdoctoral researcher, Dr Belle expanded her research expertise by publishing in peer-reviewed journals and gaining experience in writing grants and managing projects. In 2023, she received two prestigious research grants. In the Water Research Commission grant, she is leading a team of six national and international experts in risk assessment of emerging contaminants in water resources.

Furthermore, Dr Belle received the Innovation Postdoctoral Fellowship award for 2023 from the National Research Foundation (NRF). She explains that the project focuses on investigating sources, pathways, occurrences, and potential risks of pharmaceuticals of emerging concern on potential receptors in water resources. “This study targets the different wastewater treatment plants (WWTP) in Mangaung, as these plants pose a potential risk of introducing pharmaceuticals into water systems,” she remarks.

Strengthening capacity development

Focusing on understanding the risks of new pollutants in water resources, Dr Belle is well on her way to becoming one of the leading researchers in water and health, a long-standing aspiration of hers. “I see myself working with top researchers in my field, both nationally and internationally, to be part of important international research projects, including working with the European Union and the United Nations,” she says.

In addition to making an impact on the international stage and collaborating with experts in her field, she also aims to transfer and share her skills to the postgraduate students working with her, thereby strengthening their development.

For girls and young women aspiring to embark on a journey in any field of science, her message is that it is possible. “Whatever career path you wish to pursue in sciences, put your mind to it and be passionate about what you do; ultimately, you will testify that ‘it is possible’,” Dr Belle concludes. 

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept