Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 February 2024 | Story Leonie Bolleurs | Photo SUPPLIED
Dr Gladys Belle
Dr Gladys Belle is passionate about water research and human health. Her interest in water and health-related research grew due to the health crisis caused by human exposure to contaminated water sources in South Africa.

Beyond the destruction caused by the Coronavirus during the COVID-19 pandemic, it continues to impact not only the lives of many people but also the environment.

Dr Gladys Belle, a postdoctoral researcher in the Centre for Environmental Management at the University of the Free State (UFS), is currently focusing her research on the risk assessment of pharmaceuticals of emerging concern in water resources, specifically concerning human health and aquatic ecosystems. She explains that her research investigates the occurrence, fate, and behaviour of four drugs used during COVID-19 and assesses the risk these drugs pose to human health and the aquatic ecosystem within the Orange-Senqu River Basin.

“I am passionate about water research and more passionate about human health. My interest in water and health-related research grew due to the health crisis caused by human exposure to contaminated water sources in South Africa,” she states.

Dr Belle adds that she wants to raise awareness and shape the behaviour of local communities in South Africa regarding safe disposal methods. Through programmes such as take-back initiatives, the research seeks to reduce the impact of pharmaceuticals on water resources. She states, “My research will also influence the implementation of various preventive measures, including policies regulating the disposal of drugs into the environment. This research may serve as the basis for better sanitation solutions within communities and improving wastewater treatment processes in the country.”

Focusing on women scientists such as Dr Belle, the UFS will be celebrating the United Nations International Day of Women and Girls in Science on 11 February, commemorating women in the field of science and encouraging girls to pursue careers in this field.

A passion for academia and science

From a young age, Dr Belle was deeply enthusiastic about academia, particularly in the field of science. She studied Environmental Sciences at a university in Cameroon, earning her BSc in 2003. Taking a ten-year break, she focused on being a mum and also worked as Biology teacher in Lesotho.

Despite staying away from the university for an extended period, Dr Belle never let go of her passion and vision to one day become a renowned researcher and academic. In 2012, she enrolled for her honours degree in Environmental Health, followed by her master's in 2013, which she passed with distinction. Immediately after, she enrolled for a PhD and successfully graduated in 2021.

She mentions that her PhD journey came with various challenges, balancing responsibilities as a part-time lecturer, a mother, and a wife while pursuing her studies. “Regardless of all those challenges, I never gave up. Instead, they kept me motivated to get going,” she says.

The same year that she obtained her PhD, Dr Belle joined the university as a postdoctoral researcher. “Being a researcher at the UFS has allowed me to advance my research career and provided a platform for me to meet and learn from the gurus in my field,” she comments. Dr Belle considers Prof Paul Oberholster, the Dean of the Faculty of Natural and Agricultural Sciences and her current supervisor, as a true mentor. He not only teaches her the skill of hard work, but he also encourages her to aim high in research. She also expresses great appreciation to the Directorate of Research Development for its support during her research journey, providing her with access to tools and resources to effectively pursue her work as researcher.

As postdoctoral researcher, Dr Belle expanded her research expertise by publishing in peer-reviewed journals and gaining experience in writing grants and managing projects. In 2023, she received two prestigious research grants. In the Water Research Commission grant, she is leading a team of six national and international experts in risk assessment of emerging contaminants in water resources.

Furthermore, Dr Belle received the Innovation Postdoctoral Fellowship award for 2023 from the National Research Foundation (NRF). She explains that the project focuses on investigating sources, pathways, occurrences, and potential risks of pharmaceuticals of emerging concern on potential receptors in water resources. “This study targets the different wastewater treatment plants (WWTP) in Mangaung, as these plants pose a potential risk of introducing pharmaceuticals into water systems,” she remarks.

Strengthening capacity development

Focusing on understanding the risks of new pollutants in water resources, Dr Belle is well on her way to becoming one of the leading researchers in water and health, a long-standing aspiration of hers. “I see myself working with top researchers in my field, both nationally and internationally, to be part of important international research projects, including working with the European Union and the United Nations,” she says.

In addition to making an impact on the international stage and collaborating with experts in her field, she also aims to transfer and share her skills to the postgraduate students working with her, thereby strengthening their development.

For girls and young women aspiring to embark on a journey in any field of science, her message is that it is possible. “Whatever career path you wish to pursue in sciences, put your mind to it and be passionate about what you do; ultimately, you will testify that ‘it is possible’,” Dr Belle concludes. 

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept