Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 February 2024 | Story Leonie Bolleurs | Photo SUPPLIED
Dr Gladys Belle
Dr Gladys Belle is passionate about water research and human health. Her interest in water and health-related research grew due to the health crisis caused by human exposure to contaminated water sources in South Africa.

Beyond the destruction caused by the Coronavirus during the COVID-19 pandemic, it continues to impact not only the lives of many people but also the environment.

Dr Gladys Belle, a postdoctoral researcher in the Centre for Environmental Management at the University of the Free State (UFS), is currently focusing her research on the risk assessment of pharmaceuticals of emerging concern in water resources, specifically concerning human health and aquatic ecosystems. She explains that her research investigates the occurrence, fate, and behaviour of four drugs used during COVID-19 and assesses the risk these drugs pose to human health and the aquatic ecosystem within the Orange-Senqu River Basin.

“I am passionate about water research and more passionate about human health. My interest in water and health-related research grew due to the health crisis caused by human exposure to contaminated water sources in South Africa,” she states.

Dr Belle adds that she wants to raise awareness and shape the behaviour of local communities in South Africa regarding safe disposal methods. Through programmes such as take-back initiatives, the research seeks to reduce the impact of pharmaceuticals on water resources. She states, “My research will also influence the implementation of various preventive measures, including policies regulating the disposal of drugs into the environment. This research may serve as the basis for better sanitation solutions within communities and improving wastewater treatment processes in the country.”

Focusing on women scientists such as Dr Belle, the UFS will be celebrating the United Nations International Day of Women and Girls in Science on 11 February, commemorating women in the field of science and encouraging girls to pursue careers in this field.

A passion for academia and science

From a young age, Dr Belle was deeply enthusiastic about academia, particularly in the field of science. She studied Environmental Sciences at a university in Cameroon, earning her BSc in 2003. Taking a ten-year break, she focused on being a mum and also worked as Biology teacher in Lesotho.

Despite staying away from the university for an extended period, Dr Belle never let go of her passion and vision to one day become a renowned researcher and academic. In 2012, she enrolled for her honours degree in Environmental Health, followed by her master's in 2013, which she passed with distinction. Immediately after, she enrolled for a PhD and successfully graduated in 2021.

She mentions that her PhD journey came with various challenges, balancing responsibilities as a part-time lecturer, a mother, and a wife while pursuing her studies. “Regardless of all those challenges, I never gave up. Instead, they kept me motivated to get going,” she says.

The same year that she obtained her PhD, Dr Belle joined the university as a postdoctoral researcher. “Being a researcher at the UFS has allowed me to advance my research career and provided a platform for me to meet and learn from the gurus in my field,” she comments. Dr Belle considers Prof Paul Oberholster, the Dean of the Faculty of Natural and Agricultural Sciences and her current supervisor, as a true mentor. He not only teaches her the skill of hard work, but he also encourages her to aim high in research. She also expresses great appreciation to the Directorate of Research Development for its support during her research journey, providing her with access to tools and resources to effectively pursue her work as researcher.

As postdoctoral researcher, Dr Belle expanded her research expertise by publishing in peer-reviewed journals and gaining experience in writing grants and managing projects. In 2023, she received two prestigious research grants. In the Water Research Commission grant, she is leading a team of six national and international experts in risk assessment of emerging contaminants in water resources.

Furthermore, Dr Belle received the Innovation Postdoctoral Fellowship award for 2023 from the National Research Foundation (NRF). She explains that the project focuses on investigating sources, pathways, occurrences, and potential risks of pharmaceuticals of emerging concern on potential receptors in water resources. “This study targets the different wastewater treatment plants (WWTP) in Mangaung, as these plants pose a potential risk of introducing pharmaceuticals into water systems,” she remarks.

Strengthening capacity development

Focusing on understanding the risks of new pollutants in water resources, Dr Belle is well on her way to becoming one of the leading researchers in water and health, a long-standing aspiration of hers. “I see myself working with top researchers in my field, both nationally and internationally, to be part of important international research projects, including working with the European Union and the United Nations,” she says.

In addition to making an impact on the international stage and collaborating with experts in her field, she also aims to transfer and share her skills to the postgraduate students working with her, thereby strengthening their development.

For girls and young women aspiring to embark on a journey in any field of science, her message is that it is possible. “Whatever career path you wish to pursue in sciences, put your mind to it and be passionate about what you do; ultimately, you will testify that ‘it is possible’,” Dr Belle concludes. 

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept