Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 February 2024 | Story VALENTINO NDABA | Photo SUPPLIED
Dr Jacques Matthee
Dr Jacques Matthee, was recently appointed the new Vice-Dean at the Faculty of Law.

In the dynamic landscape of academia, where traditional methodologies intersect with digital advancements, Dr Jacques Matthee stands out as a beacon of innovation and change. Recently assuming the role of Vice-Dean for Learning, Teaching, Innovation, and Digitalisation at the Faculty of Law, University of the Free State (UFS), Dr Matthee brings with him a profound dedication to knowledge, a passion for transformation, and a clear vision for the future of legal education.

With a distinguished academic background, including qualifications in LLB, LLM, and LLD, Dr Matthee has established himself as an expert in areas such as Legal Pluralism, African Customary Law, Criminal Law, and Medical Law. However, it is not just his credentials that distinguish him; it is his unwavering commitment to the pursuit of knowledge that sets him apart.

Pursuing knowledge: A lifelong passion

Reflecting on his childhood aspirations, Dr Matthee recalls dreaming of becoming a detective – a fascination that eventually led him to the realm of law. Over time, his interest in law deepened, propelling him towards his current position as a leading figure in legal academia. Yet, Dr Matthee’s ambitions extend beyond conventional success. In 2023, he surprised many by participating in his first-ever fitness event, demonstrating a determination to challenge himself beyond the boundaries of his profession. This blend of dedication, discipline, and integrity not only characterises his personal pursuits but also informs his professional endeavours.

Charting new horizons: The Vice-Dean's vision

Assuming the role of Vice-Dean for Learning, Teaching, Innovation, and Digitalisation, Dr Matthee enters uncharted territory. "It is a new position, not only within the faculty but also at UFS," he explains. "There is no model or blueprint to guide us." However, it is precisely this challenge that excites him the most. With autonomy in his role, Dr Matthee sees an opportunity to shape the future of legal education by pioneering initiatives that integrate traditional pedagogy with cutting-edge digital advancements.

"I look forward to the challenge of creating such a blueprint," Dr Matthee remarks. "Moreover, the position will allow me to explore and introduce exciting initiatives that could make a meaningful impact on the future and direction of teaching and learning in the faculty."

For Dr Matthee, the future of legal education lies not only in embracing innovation but also in cultivating an environment where curiosity thrives and knowledge knows no bounds. Under his leadership, the Faculty of Law at UFS is poised to embark on a transformative journey, where learning, teaching, and innovation converge to shape the legal minds of tomorrow.

In Dr Jacques Matthee, the UFS Faculty of Law finds not just a Vice-Dean, but a visionary dedicated to pushing boundaries, challenging norms, and sculpting a future where the pursuit of knowledge knows no limits. 

News Archive

Heart-valve studies receive international recognition
2017-07-11

 Description: Heart-valve studies  Tags: Heart-valve studies  

Prof Francis Smit, Head of the Department of
Cardiothoracic Surgery at the UFS, and Manager of the
Robert WM Frater Cardiovascular Research Centre, with
Kyle Davis, Mechanical Engineer at the centre.

Photo: Rulanzen Martin

Three heart-valve studies which have been developed at the Robert WM Frater Cardiovascular Research Centre at the School of Medicine at the University of the Free State (UFS) were recently presented in Monte Carlo at the conference of the prestigious global Heart Valve Society (HVS).

These studies are all headed by Prof Francis Smit, Head of the Department of Cardiothoracic Surgery at the UFS, and Manager of the Robert WM Frater Cardiovascular Research Centre.
Prof Smit says the HVS is a combination of the former heart-valve societies of Europe and the US. “Studies on heart-valve disease, heart-valve-related products and operations, as well as the design and development of new valves were presented. There are both clinical and development divisions.

He says the study in which the hemodynamics of their redesigned mechanical poppet valve was compared to a commercial bi-leaflet mechanical heart valve, was named as the best poster presentation in the experimental valve development and numerical flow dynamics division. The study, which was presented by Kyle Davis, mechanical engineer at the centre, competed against some of the best heart-valve research units in the world.

The redesigned valve, based on the 1960s Cape Town poppet valve, has the potential to provide a low-cost solution for mechanical heart-valve replacement. It is possible to produce the titanium ring with 3-D printers and is, together with the silicon poppet valve, extremely inexpensive compared to current mechanical valve-manufacturing processes.
The advantages of this valve over current mechanical valves is that, due to the effective and laminar flow characteristics, as well as the simple locking mechanisms, there is a reduced chance of valve thrombosis, and the need for anti-clotting drugs is therefore limited.

It was also confirmed that the new valve more than meets the published FDA (Federal Drug Agency) requirements, which determine the minimum standards of valves for human use in the US.

The redesigned valve also has a very low platelet activation impact, which is responsible for platelet thrombosis and leads to valve thrombosis or strokes. This valve is another heart-valve project by the centre, which is also in the process of evaluating a tri-leaflet polyurethane valve developed by them.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept