Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 February 2024 | Story Leonie Bolleurs | Photo SUPPLIED
Tebogo Motsei
Tebogo Motsei, a PhD student in Physics at the UFS, has been awarded the prestigious CV Raman International Fellowship for African Researchers.

Imagine a supercapacitor/battery made right here in South Africa that could change the way we store energy for the better. A product that can store energy in real time, thus solving energy problems as they happen, which makes a huge difference especially during power outages. A product that is not just good for the environment – transitioning away from lithium-ion batteries – but that can also create jobs and boost the local economy.

What we are talking about is a type of technology known as a sodium-ion supercapacitor/battery, which is the focus of Tebogo Motsei’s research. This technology serves as a power source for lighting, power plants, cars, and phones. Motsei, a PhD student in the Department of Physics on the Qwaqwa Campus of the University of the Free State (UFS), explains that – unlike lithium batteries, which have undergone extensive research and are expensive to produce – they are conducting experimental work and characterisations to determine if sodium-ion supercapacitor/batteries can perform as well or even better, using more affordable and eco-friendly materials.

“Our results, inspired by the urgent need for improved energy storage solutions in South Africa amid its energy challenges, have been very promising. We have successfully developed a sodium-ion supercapacitor/battery that stores as much energy as a lithium-ion battery. Moreover, it was crafted from recycled materials, making it a more cost-effective and environmentally friendly option,” states Motsei, adding that their battery is unique, as no one else in the world has created anything quite like it, despite numerous attempts.

She is also pleased with this supercapacitor/battery’s ability to repair itself. Motsei explains, “Imagine if your toy could fix itself whenever it got broken – that's kind of what our sodium-ion supercapacitor/battery does!”

Motsei is part of a group of scientists in the Department of Physics at the UFS who are working on this research and who have published a scientific article on their work, titled Composite super-capacitor/Na-ion battery with self-healing Fe–Cr alloy electrodes. 

“We're proud of what we have accomplished,” she remarks.

Fellowship: a dream come true

Being part of this impactful research contributed to Motsei receiving the prestigious CV Raman International Fellowship for African Researchers (2023). The fellowship is for African researchers engaged in research at an African institution, providing opportunities for research collaboration in India. Motsei will be the only candidate from South Africa.

This award is merit-based. Motsei attributes her selection to factors such as her strong academic record, research accomplishments, and innovative approach to solving complex problems. She also believes her experience in research, collaboration, and publication reflects her potential to make meaningful contributions to the field during the fellowship period. 

Another key factor contributing to her selection for this fellowship is her skill in fabricating actual devices/prototypes. “The hands-on nature of this research, allowing me to create devices from scratch, has always been my passion. Making my first device – the ‘Magnetron Sputtering Unit’ – during my master’s studies, was a turning point. It made me realise that I had made the best decision ever by choosing this research field. I'm truly passionate about my work,” says Motsei. 

For her PhD studies, she is supervised by Prof Richard Ocaya, Associate Professor in the Department of Physics, and co-supervised by Dr Kamohelo Tshabalala, Senior Lecturer in the Department of Physics. Prof Ocaya, proud of Motsei’s achievements, believes that this fellowship not only serves as a great motivation for students – especially on the Qwaqwa Campus – but also highlights the global relevance of the UFS, particularly the Department of Physics.

Motsei says receiving this fellowship is a dream come true and a profound, life-changing moment for her. “I feel deeply honoured to be concluding this programme at the CSIR-Electrochemical Research Institute, the host institution in India, under the guidance of Prof Arul Manuel Stephan, whose invaluable assistance has been instrumental in my preparations.” Motsei also expressed her gratitude towards everyone who has supported her during this process, including Sudhir Kumar from the Indian Embassy in Pretoria.

“I am excited about how I can use this opportunity to make a difference. Whether it’s tackling significant global energy issues or finding new ways to solve everyday problems, I know this fellowship will give me the tools and support needed to make a real impact. Overall, I see this fellowship as a stepping stone to exciting new opportunities and adventures in the world of research,” she comments.

Making a meaningful impact

Motsei will be leaving for India on 23 February for a period of six months. She is excited about this new chapter in her research journey. “This fellowship will enhance my abilities as a scientist and leader in physics, providing me with essential skills, connections, and experience to make a meaningful impact in science and energy. I'm genuinely happy about this opportunity, which I thank God for.”

  • Sir Chandrasekhara Venkata Raman, after whom the fellowship is named, was a renowned Indian physicist who made great contributions to physics, winning many prizes and awards, including the 1930 Nobel Prize in Physics. He was known for his work in the field of light scattering and was the first Asian and non-European to receive a Nobel prize in any branch of science. 

News Archive

Researcher works on finding practical solutions to plant diseases for farmers
2017-10-03

 Description: Lisa read more Tags: Plant disease, Lisa Ann Rothman, Department of Plant Sciences, 3 Minute Thesis,  

Lisa Ann Rothman, researcher in the Department of
Plant Sciences.
Photo: Supplied

 


Plant disease epidemics have wreaked havoc for many centuries. Notable examples are the devastating Great Famine in Ireland and the Witches of Salem. 

Plant diseases form, due to a reaction to suitable environments, when a susceptible host and viable disease causal organism are present. If the interactions between these three factors are monitored over space and time the outcome has the ability to form a “simplification of reality”. This is more formally known as a plant disease model. Lisa Ann Rothman, a researcher in the Department of Plant Sciences at the University of the Free State (UFS) participated in the Three Minute Thesis competition in which she presented on Using mathematical models to predict plant disease. 

Forecast models provide promise fighting plant diseases
The aim of Lisa’s study is to identify weather and other driving variables that interact with critical host growth stages and pathogens to favour disease incidence and severity, for future development of risk forecasting models. Lisa used the disease, sorghum grain mold, caused by colonisation of Fusarium graminearum, and concomitant mycotoxin production to illustrate the modelling process. 

She said: “Internationally, forecasting models for many plant diseases exist and are applied commercially for important agricultural crops. The application of these models in a South African context has been limited, but provides promise for effective disease intervention technologies.

Contributing to the betterment of society
“My BSc Agric (Plant Pathology) undergraduate degree was completed in combination with Agrometeorology, agricultural weather science. I knew that I wanted to combine my love for weather science with my primary interest, Plant Pathology. 
“My research is built on the statement of Lord Kelvin: ‘To measure is to know and if you cannot measure it, you cannot improve it’. Measuring the changes in plant disease epidemics allows for these models to be developed and ultimately provide practical solutions for our farmers. Plant disease prediction models have the potential ability to reduce the risk for famers, allowing the timing of fungicide applications to be optimised, thus protecting their yields and ultimately their livelihoods. I am continuing my studies in agriculture in the hope of contributing to the betterment of society.” 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept