Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 February 2024 | Story Leonie Bolleurs | Photo SUPPLIED
Tebogo Motsei
Tebogo Motsei, a PhD student in Physics at the UFS, has been awarded the prestigious CV Raman International Fellowship for African Researchers.

Imagine a supercapacitor/battery made right here in South Africa that could change the way we store energy for the better. A product that can store energy in real time, thus solving energy problems as they happen, which makes a huge difference especially during power outages. A product that is not just good for the environment – transitioning away from lithium-ion batteries – but that can also create jobs and boost the local economy.

What we are talking about is a type of technology known as a sodium-ion supercapacitor/battery, which is the focus of Tebogo Motsei’s research. This technology serves as a power source for lighting, power plants, cars, and phones. Motsei, a PhD student in the Department of Physics on the Qwaqwa Campus of the University of the Free State (UFS), explains that – unlike lithium batteries, which have undergone extensive research and are expensive to produce – they are conducting experimental work and characterisations to determine if sodium-ion supercapacitor/batteries can perform as well or even better, using more affordable and eco-friendly materials.

“Our results, inspired by the urgent need for improved energy storage solutions in South Africa amid its energy challenges, have been very promising. We have successfully developed a sodium-ion supercapacitor/battery that stores as much energy as a lithium-ion battery. Moreover, it was crafted from recycled materials, making it a more cost-effective and environmentally friendly option,” states Motsei, adding that their battery is unique, as no one else in the world has created anything quite like it, despite numerous attempts.

She is also pleased with this supercapacitor/battery’s ability to repair itself. Motsei explains, “Imagine if your toy could fix itself whenever it got broken – that's kind of what our sodium-ion supercapacitor/battery does!”

Motsei is part of a group of scientists in the Department of Physics at the UFS who are working on this research and who have published a scientific article on their work, titled Composite super-capacitor/Na-ion battery with self-healing Fe–Cr alloy electrodes. 

“We're proud of what we have accomplished,” she remarks.

Fellowship: a dream come true

Being part of this impactful research contributed to Motsei receiving the prestigious CV Raman International Fellowship for African Researchers (2023). The fellowship is for African researchers engaged in research at an African institution, providing opportunities for research collaboration in India. Motsei will be the only candidate from South Africa.

This award is merit-based. Motsei attributes her selection to factors such as her strong academic record, research accomplishments, and innovative approach to solving complex problems. She also believes her experience in research, collaboration, and publication reflects her potential to make meaningful contributions to the field during the fellowship period. 

Another key factor contributing to her selection for this fellowship is her skill in fabricating actual devices/prototypes. “The hands-on nature of this research, allowing me to create devices from scratch, has always been my passion. Making my first device – the ‘Magnetron Sputtering Unit’ – during my master’s studies, was a turning point. It made me realise that I had made the best decision ever by choosing this research field. I'm truly passionate about my work,” says Motsei. 

For her PhD studies, she is supervised by Prof Richard Ocaya, Associate Professor in the Department of Physics, and co-supervised by Dr Kamohelo Tshabalala, Senior Lecturer in the Department of Physics. Prof Ocaya, proud of Motsei’s achievements, believes that this fellowship not only serves as a great motivation for students – especially on the Qwaqwa Campus – but also highlights the global relevance of the UFS, particularly the Department of Physics.

Motsei says receiving this fellowship is a dream come true and a profound, life-changing moment for her. “I feel deeply honoured to be concluding this programme at the CSIR-Electrochemical Research Institute, the host institution in India, under the guidance of Prof Arul Manuel Stephan, whose invaluable assistance has been instrumental in my preparations.” Motsei also expressed her gratitude towards everyone who has supported her during this process, including Sudhir Kumar from the Indian Embassy in Pretoria.

“I am excited about how I can use this opportunity to make a difference. Whether it’s tackling significant global energy issues or finding new ways to solve everyday problems, I know this fellowship will give me the tools and support needed to make a real impact. Overall, I see this fellowship as a stepping stone to exciting new opportunities and adventures in the world of research,” she comments.

Making a meaningful impact

Motsei will be leaving for India on 23 February for a period of six months. She is excited about this new chapter in her research journey. “This fellowship will enhance my abilities as a scientist and leader in physics, providing me with essential skills, connections, and experience to make a meaningful impact in science and energy. I'm genuinely happy about this opportunity, which I thank God for.”

  • Sir Chandrasekhara Venkata Raman, after whom the fellowship is named, was a renowned Indian physicist who made great contributions to physics, winning many prizes and awards, including the 1930 Nobel Prize in Physics. He was known for his work in the field of light scattering and was the first Asian and non-European to receive a Nobel prize in any branch of science. 

News Archive

Fracking in the Karoo has advantages and disadvantages
2012-05-25

 

Dr Danie Vermeulen
Photo: Leatitia Pienaar
25 May 2012

Fracking for shale gas in the Karoo was laid bare during a public lecture by Dr Danie Vermeulen, Director of the Institute for Groundwater Studies (IGS). He shared facts, figures and research with his audience. No “yes” or “no” vote was cast. The audience was left to decide for itself.

The exploitation of shale gas in the pristine Karoo has probably been one of the most debated issues in South Africa since 2011.
 
Dr Vermeulen’s lecture, “The shale gas story in the Karoo: both sides of the coin”, was the first in a series presented by the Faculty of Natural and Agricultural Science under the theme “Sustainability”. Dr Vermeulen is a trained geo-hydrologist and geologist. He has been involved in fracking in South Africa since the debate started. He went on a study tour to the USA in 2011 to learn more about fracking and he visited the USA to further his investigation in May 2012.
 
Some of the information he shared, includes:

- It is estimated that South Africa has the fifth-largest shale-gas reserves in the world, following on China, the USA, Argentina and Mexico.
- Flow-back water is stored in sealed tanks and not in flow-back dams.
- Fracturing will not contaminate the water in an area, as the drilling of the wells will go far deeper than the groundwater aquifers. Every well has four steel casings – one within the other – with the gaps between them sealed with cement.
- More than a million hydraulic fracturing simulations took place in the USA without compromising fresh groundwater. The surface activities can cause problems because that is where man-made and managerial operations could cause pollution.
- Water use for shale-gas exploration is lower than for other kinds of energy, but the fact that the Karoo is an arid region makes the use of groundwater a sensitive issue. Dr Vermeulen highlighted this aspect as his major concern regarding shale-gas exploration.
- The cost to develop is a quarter of the cost for an oil well in the Gulf of Mexico.
- Dolerite intrusions in the Karoo are an unresearched concern. Dolerite is unique to the South African situation. Dolerite intrusion temperatures exceed 900 °C.

He also addressed the shale-gas footprint, well decommissioning and site reclamation, radio activity in the shale and the low possibility of seismic events.
 
Dr Vermeulen said South Africa is a net importer of energy. About 90% of its power supply is coal-based. For continued economic growth, South Africa needs a stable energy supply. It is also forecast that energy demand in South Africa is growing faster than the average global demand.
 
Unknowns to be addressed in research and exploration are the gas reserves and gas needs of South Africa. Do we have enough water? What will be the visual and social impact? Who must do the exploration?
 
“Only exploration will give us these answers,” Dr Vermeulen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept