Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 February 2024 | Story Leonie Bolleurs | Photo SUPPLIED
Tebogo Motsei
Tebogo Motsei, a PhD student in Physics at the UFS, has been awarded the prestigious CV Raman International Fellowship for African Researchers.

Imagine a supercapacitor/battery made right here in South Africa that could change the way we store energy for the better. A product that can store energy in real time, thus solving energy problems as they happen, which makes a huge difference especially during power outages. A product that is not just good for the environment – transitioning away from lithium-ion batteries – but that can also create jobs and boost the local economy.

What we are talking about is a type of technology known as a sodium-ion supercapacitor/battery, which is the focus of Tebogo Motsei’s research. This technology serves as a power source for lighting, power plants, cars, and phones. Motsei, a PhD student in the Department of Physics on the Qwaqwa Campus of the University of the Free State (UFS), explains that – unlike lithium batteries, which have undergone extensive research and are expensive to produce – they are conducting experimental work and characterisations to determine if sodium-ion supercapacitor/batteries can perform as well or even better, using more affordable and eco-friendly materials.

“Our results, inspired by the urgent need for improved energy storage solutions in South Africa amid its energy challenges, have been very promising. We have successfully developed a sodium-ion supercapacitor/battery that stores as much energy as a lithium-ion battery. Moreover, it was crafted from recycled materials, making it a more cost-effective and environmentally friendly option,” states Motsei, adding that their battery is unique, as no one else in the world has created anything quite like it, despite numerous attempts.

She is also pleased with this supercapacitor/battery’s ability to repair itself. Motsei explains, “Imagine if your toy could fix itself whenever it got broken – that's kind of what our sodium-ion supercapacitor/battery does!”

Motsei is part of a group of scientists in the Department of Physics at the UFS who are working on this research and who have published a scientific article on their work, titled Composite super-capacitor/Na-ion battery with self-healing Fe–Cr alloy electrodes. 

“We're proud of what we have accomplished,” she remarks.

Fellowship: a dream come true

Being part of this impactful research contributed to Motsei receiving the prestigious CV Raman International Fellowship for African Researchers (2023). The fellowship is for African researchers engaged in research at an African institution, providing opportunities for research collaboration in India. Motsei will be the only candidate from South Africa.

This award is merit-based. Motsei attributes her selection to factors such as her strong academic record, research accomplishments, and innovative approach to solving complex problems. She also believes her experience in research, collaboration, and publication reflects her potential to make meaningful contributions to the field during the fellowship period. 

Another key factor contributing to her selection for this fellowship is her skill in fabricating actual devices/prototypes. “The hands-on nature of this research, allowing me to create devices from scratch, has always been my passion. Making my first device – the ‘Magnetron Sputtering Unit’ – during my master’s studies, was a turning point. It made me realise that I had made the best decision ever by choosing this research field. I'm truly passionate about my work,” says Motsei. 

For her PhD studies, she is supervised by Prof Richard Ocaya, Associate Professor in the Department of Physics, and co-supervised by Dr Kamohelo Tshabalala, Senior Lecturer in the Department of Physics. Prof Ocaya, proud of Motsei’s achievements, believes that this fellowship not only serves as a great motivation for students – especially on the Qwaqwa Campus – but also highlights the global relevance of the UFS, particularly the Department of Physics.

Motsei says receiving this fellowship is a dream come true and a profound, life-changing moment for her. “I feel deeply honoured to be concluding this programme at the CSIR-Electrochemical Research Institute, the host institution in India, under the guidance of Prof Arul Manuel Stephan, whose invaluable assistance has been instrumental in my preparations.” Motsei also expressed her gratitude towards everyone who has supported her during this process, including Sudhir Kumar from the Indian Embassy in Pretoria.

“I am excited about how I can use this opportunity to make a difference. Whether it’s tackling significant global energy issues or finding new ways to solve everyday problems, I know this fellowship will give me the tools and support needed to make a real impact. Overall, I see this fellowship as a stepping stone to exciting new opportunities and adventures in the world of research,” she comments.

Making a meaningful impact

Motsei will be leaving for India on 23 February for a period of six months. She is excited about this new chapter in her research journey. “This fellowship will enhance my abilities as a scientist and leader in physics, providing me with essential skills, connections, and experience to make a meaningful impact in science and energy. I'm genuinely happy about this opportunity, which I thank God for.”

  • Sir Chandrasekhara Venkata Raman, after whom the fellowship is named, was a renowned Indian physicist who made great contributions to physics, winning many prizes and awards, including the 1930 Nobel Prize in Physics. He was known for his work in the field of light scattering and was the first Asian and non-European to receive a Nobel prize in any branch of science. 

News Archive

Research on cactus pear grabs attention of food, cosmetic and medical industry
2015-02-18

Cactus pear
Photo: Charl Devenish

The dedicated research and development programme at the UFS on spineless cactus pear (Opuntia ficus-indica) – also known as prickly pear – has grown steadily in both vision and dimension during the past 15 years. Formal cactus pear research at the UFS started with the formation of the Prickly Pear Working Group (PPWG) in June 2002. It has since gone from strength to strength with several MSc dissertations and a PhD thesis as well as popular and scientific publications flowing from this initiative.

According to Prof Wijnand Swart from the Department of Plant Sciences, the UFS is today recognised as a leading institution in the world conducting multi-disciplinary research on spineless cactus pear.

Cactus pear for animal feed

Increasing demands on already scarce water resources in South Africa require alternative sources of animal feed – specifically crops that are more efficient users of water. One alternative with the potential for widespread production is spineless cactus pear. It is 1.14 x more efficient in its use of water than Old man saltbush, 2.8 x more efficient than wheat, 3.75 x more efficient than lucerne and 7.5 x more efficient than rangeland vegetation.

“Studies on the use of sun-dried cactus pear cladodes suggest that it has the potential to provide some 25% of the basic feed resources required by South Africa’s commercial ruminant feed manufacturing sector,” says Prof HO de Waal of the Department of Animal, Wildlife and Grassland Sciences at the UFS.

Until recently, research has focused extensively on the use of cactus pear as drought fodder. However, this is now beginning to shift, with growing interest in the intensive production of spineless cactus pear for other types of animal feed. One example is the spineless cactus pear fruit, produced seasonal, yielding large quantities of fruit in a relatively short period of a few months in summer. Unless kept in cold storage, the fruit cannot be stored for a long period. Therefore, a procedure was developed to combine large volumes of mashed cactus pear fruit with dry hay and straw and preserve it for longer periods as high moisture livestock feed, kuilmoes – a high water content livestock feed similar to silage.

Cactus pear and Pineapple juice
Photo: Charl Devenish

Cactus pear for human consumption

“In addition to its use as a livestock feed, cactus pear is increasingly being cultivated for human consumption. Although the plant can be consumed fresh as a juice or vegetable, significant value can be added through processing. This potential is considerable: the plant can be pickled; preserved as a jam or marmalade; or dried and milled to produce baking flour. It can also serve as a replacement of egg and fat in mayonnaise,” said Dr Maryna de Wit from the Department of Microbial, Biochemical and Food Biotechnology.

The extraction of mucilage from fresh cladodes can form a gelling, emulsifier, and fat-replacing agent commonly found in food products such as mayonnaise and candy. During an information session to the media Dr De Wit and her team conducted a food demonstration to showcase the use of the cladodes in a juice, chicken stir-fry, biscuits and a salad.

The extrusion of cactus pear seed oil provides a further lucrative niche product to the array of uses. These include high-value organic oil for the cosmetic sector, such as soap, hair gel and sun screens.

The cladodes and the fruit also have medicinal uses. It has anti-viral, anti-inflammatory, pain killing and anti-diabetic agents. It is also high in fibre and can lower cholesterol. The fruit also prevents proliferation of cells and suppresses tumour growth and can even help to reduce a hangover.

In South Africa the outdated perception of cactus pears as thorny, alien invaders, is rapidly disappearing. Instead, farmers now recognise that cactus pear can play a vital role as a high yielding, water-efficient, multi-use crop, said Prof de Waal and the members of the Cactus Pear Team.

Facebook photo gallery
Dagbreek interview with Dr Maryna de Wit  

Research on cactus pear (read the full story)

For more information or enquiries contact news@ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept