Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 February 2024 | Story EDZANI NEPHALELA | Photo SUPPLIED
Jerry Dlamini
Dr Jerry Dlamini, lecturer and researcher specialising in agronomy within the Department of Soil, Crop, and Climate Sciences at the University of the Free State (UFS), is at the forefront of pioneering research in this field.

Greenhouse gas emissions represent a significant global concern, driving climate change on a massive scale. This concern is particularly pronounced in rainfed agriculture, where understanding and addressing these emissions are crucial for ensuring sustainable agricultural practices. 

In South Africa, rainfed agriculture is vital in food production, contributing substantially to the nation's agricultural output. However, this sector also stands as a notable contributor to greenhouse gas emissions, primarily through activities such as livestock farming, fertiliser use, and changes in land use.

Dr Jerry Dlamini, a distinguished lecturer and researcher specialising in agronomy within the Department of Soil, Crop, and Climate Sciences at the University of the Free State (UFS), is leading pioneering research in this field. His current project, @CROPGas on X, funded by the European Joint Programme (EPJ), with a budget of R22 million, focuses on investigating the impact of various conservation agriculture interventions on greenhouse gas emissions, primarily targeting nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2).

This two-year project, which commenced in December 2022 and concludes in December 2024, is a collaborative effort between European and African universities and institutions, including Rothamsted Research (UK), University College Dublin (Ireland), University of Nottingham (UK), University of Poznan (Poland), British Geological Surveys (BGS), University of Zambia (Zambia), University of Zimbabwe, and Lilongwe University of Agriculture and Natural Resources (Malawi). 

Dr Dlamini’s preliminary findings from the UFS Kenilworth Experimental Farm indicate that climate-smart agriculture interventions, such as legume rotation and no-till practices, have the potential to reduce the intensity of greenhouse gas emissions, particularly highly radiative gases like N2O.

“This is a significant finding,” Dr Dlamini noted, “as N2O has a global warming potential 100 times greater than CO2 over a 100-year horizon, meaning its impact on ozone depletion persists far longer despite being emitted in smaller quantities.”

Looking ahead, Dr Dlamini advocates for increased research efforts to quantify greenhouse gas emissions from South African croplands. He emphasises the importance of field-based measurements, akin to methodologies employed by other nations, to enhance the accuracy and effectiveness of South Africa's greenhouse gas inventories submitted annually to the United Nations Framework Convention on Climate Change (UNFCCC) and to devise effective mitigation strategies. 

News Archive

New research informs improved treatment of brain inflammation
2017-10-13

Description: Sebolai and Ogundeji Tags: Microbiologist, Dr Adepemi Ogundeji,  

Dr Adepemi Ogundeji, researcher in the Department of Microbial,
Biochemical and Food Biotechnology at the
University of the Free State,
and Dr Olihile Sebolai,
her study leader from the same department.
Photo: Charl Devenish



Microbiologist Dr Adepemi Ogundeji has uncovered a new use for an old medicine that can potentially save lives and money. Under the guidance of her study leader, Dr Olihile Sebolai, Dr Ogundeji set out to fight a fungal disease caused by Cryptococcus neoformans. Drs Ogundeji and Sebolai are from the University of the Free State Department of Microbial, Biochemical and Food Biotechnology. 

Dr Ogundeji is passionate about education. “My aim will always be to transfer knowledge and skills in the microbiology field,” she said. “Dr Ogundeji’s study is celebrated in that it found a new purpose for existing medicines. An advantage of repositioning old medicines is by-passing clinical trials, which sometimes take 20 years, and the safety of such medicines is already known,” Dr Sebolai, explained.

Cryptococcus infections are difficult to control and often lead to brain inflammation. In layman’s terms: “Your brain is on fire”. People with HIV/Aids are especially vulnerable, surviving only about three months without treatment. Such patients may present with a Cryptococcus-emergent psychosis, and some with an out-of-control inflammatory condition when initiated on ARVs. 

Dr Ogundeji found that the clinically recommended dosage of aspirin (anti-inflammatory medicine), and quetiapine (anti-psychotic medicine) is sufficient to control the infection. Her exceptional work was readily published in some of the foremost journals in her field, namely, Antimicrobial Agents and Chemotherapy and Frontiers in Microbiology

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept