Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 February 2024 | Story EDZANI NEPHALELA | Photo SUPPLIED
Jerry Dlamini
Dr Jerry Dlamini, lecturer and researcher specialising in agronomy within the Department of Soil, Crop, and Climate Sciences at the University of the Free State (UFS), is at the forefront of pioneering research in this field.

Greenhouse gas emissions represent a significant global concern, driving climate change on a massive scale. This concern is particularly pronounced in rainfed agriculture, where understanding and addressing these emissions are crucial for ensuring sustainable agricultural practices. 

In South Africa, rainfed agriculture is vital in food production, contributing substantially to the nation's agricultural output. However, this sector also stands as a notable contributor to greenhouse gas emissions, primarily through activities such as livestock farming, fertiliser use, and changes in land use.

Dr Jerry Dlamini, a distinguished lecturer and researcher specialising in agronomy within the Department of Soil, Crop, and Climate Sciences at the University of the Free State (UFS), is leading pioneering research in this field. His current project, @CROPGas on X, funded by the European Joint Programme (EPJ), with a budget of R22 million, focuses on investigating the impact of various conservation agriculture interventions on greenhouse gas emissions, primarily targeting nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2).

This two-year project, which commenced in December 2022 and concludes in December 2024, is a collaborative effort between European and African universities and institutions, including Rothamsted Research (UK), University College Dublin (Ireland), University of Nottingham (UK), University of Poznan (Poland), British Geological Surveys (BGS), University of Zambia (Zambia), University of Zimbabwe, and Lilongwe University of Agriculture and Natural Resources (Malawi). 

Dr Dlamini’s preliminary findings from the UFS Kenilworth Experimental Farm indicate that climate-smart agriculture interventions, such as legume rotation and no-till practices, have the potential to reduce the intensity of greenhouse gas emissions, particularly highly radiative gases like N2O.

“This is a significant finding,” Dr Dlamini noted, “as N2O has a global warming potential 100 times greater than CO2 over a 100-year horizon, meaning its impact on ozone depletion persists far longer despite being emitted in smaller quantities.”

Looking ahead, Dr Dlamini advocates for increased research efforts to quantify greenhouse gas emissions from South African croplands. He emphasises the importance of field-based measurements, akin to methodologies employed by other nations, to enhance the accuracy and effectiveness of South Africa's greenhouse gas inventories submitted annually to the United Nations Framework Convention on Climate Change (UNFCCC) and to devise effective mitigation strategies. 

News Archive

Nano research at the UFS opens door to smart drugs
2011-06-27

 

Prof. Lodewyk Kock, outstanding professor in our Department of Microbial, Biochemical and Food Biotechnology

Novel antifungal, anticancer and anti-malaria drugs that have been identified in the research of Prof. Lodewyk Kock, outstanding professor in the Department of Microbial, Biochemical and Food Biotechnology at our university, will be disclosed later this year at major international conferences in Asia, Europe and the USA. Prof. Kock will be the keynote speaker at these conferences. 

His presentations will be based on the department’s discovery of yeast assays linked to a new nanotechnology for medicine. The assays were recently discovered by his group and can be applied in the development of novel antifungal, anticancer and anti-malaria drugs.
 
Prof. Kock’s focused research at the university, which now also includes his novel nanotechnology for Biology, began in 1982 in collaboration with Prof. Pieter van Wyk (Centre for Microscopy). He recently collaborated with Prof. Hendrik Swart (Department of Physics).
 
Prof. Kock says the development of novel anti-malaria drugs in particular is getting attention across the world due to the high rates of morbidity and mortality caused by the disease worldwide. Approximately 225 million people are infected annually and about a million (many in Africa) die each year. “Many potential smart drugs have been identified with this research and should now be tested further,” says Kock.
  
These new drugs will be disclosed during Prof. Kock’s keynote addresses at the International Conference and Exhibition on Pharmaceutical Regulatory Affairs in Baltimore, USA, from 6 to 7 September 2011, the Medichem 2011 in Beijing, China from 9 to 11 August 2011 and the XVI Congress of European Mycologists in Greece, from 19 to 23 September 2011.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept