Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 February 2024 | Story EDZANI NEPHALELA | Photo SUPPLIED
Jerry Dlamini
Dr Jerry Dlamini, lecturer and researcher specialising in agronomy within the Department of Soil, Crop, and Climate Sciences at the University of the Free State (UFS), is at the forefront of pioneering research in this field.

Greenhouse gas emissions represent a significant global concern, driving climate change on a massive scale. This concern is particularly pronounced in rainfed agriculture, where understanding and addressing these emissions are crucial for ensuring sustainable agricultural practices. 

In South Africa, rainfed agriculture is vital in food production, contributing substantially to the nation's agricultural output. However, this sector also stands as a notable contributor to greenhouse gas emissions, primarily through activities such as livestock farming, fertiliser use, and changes in land use.

Dr Jerry Dlamini, a distinguished lecturer and researcher specialising in agronomy within the Department of Soil, Crop, and Climate Sciences at the University of the Free State (UFS), is leading pioneering research in this field. His current project, @CROPGas on X, funded by the European Joint Programme (EPJ), with a budget of R22 million, focuses on investigating the impact of various conservation agriculture interventions on greenhouse gas emissions, primarily targeting nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2).

This two-year project, which commenced in December 2022 and concludes in December 2024, is a collaborative effort between European and African universities and institutions, including Rothamsted Research (UK), University College Dublin (Ireland), University of Nottingham (UK), University of Poznan (Poland), British Geological Surveys (BGS), University of Zambia (Zambia), University of Zimbabwe, and Lilongwe University of Agriculture and Natural Resources (Malawi). 

Dr Dlamini’s preliminary findings from the UFS Kenilworth Experimental Farm indicate that climate-smart agriculture interventions, such as legume rotation and no-till practices, have the potential to reduce the intensity of greenhouse gas emissions, particularly highly radiative gases like N2O.

“This is a significant finding,” Dr Dlamini noted, “as N2O has a global warming potential 100 times greater than CO2 over a 100-year horizon, meaning its impact on ozone depletion persists far longer despite being emitted in smaller quantities.”

Looking ahead, Dr Dlamini advocates for increased research efforts to quantify greenhouse gas emissions from South African croplands. He emphasises the importance of field-based measurements, akin to methodologies employed by other nations, to enhance the accuracy and effectiveness of South Africa's greenhouse gas inventories submitted annually to the United Nations Framework Convention on Climate Change (UNFCCC) and to devise effective mitigation strategies. 

News Archive

43rd Conference of Agricultural Economics
2005-10-06

During the 43rd Annual Conference of the Agricultural Economics Association of South Africa (AEASA) 13 of the 30 papers (excluding invited papers) were presented by students and staff from the Department of Agricultural Economics at the University of the Free State (UFS).  The conference was attended by 24 students and 12 lecturers from the department. 

 

 

From left:  Prof André Jooste (chairperson: Department of Agricultural Economics at the UFS), Mr Andries Jordaan (awarded 2nd price in the category for the best M Sc thesis), Mr Dikus van Wyk (awarded 2nd price in the category for best student essay in agricultural economics), Mr Pieter Taljaard (best article published in the past 12 months in Agrekon, accredited journal of AEASA) and Mr Henry Jordaan (best 4th year student in agricultural economics in 2004 at the UFS).

Lacea Loader
Media Representative
Strategic Communication Division
University of the Free State
PO Box 339
BLOEMFONTEIN, 9300
Tel:  (051) 401-2584
Fax: (051) 444-6393

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept