Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 February 2024 | Story EDZANI NEPHALELA | Photo SUPPLIED
Jerry Dlamini
Dr Jerry Dlamini, lecturer and researcher specialising in agronomy within the Department of Soil, Crop, and Climate Sciences at the University of the Free State (UFS), is at the forefront of pioneering research in this field.

Greenhouse gas emissions represent a significant global concern, driving climate change on a massive scale. This concern is particularly pronounced in rainfed agriculture, where understanding and addressing these emissions are crucial for ensuring sustainable agricultural practices. 

In South Africa, rainfed agriculture is vital in food production, contributing substantially to the nation's agricultural output. However, this sector also stands as a notable contributor to greenhouse gas emissions, primarily through activities such as livestock farming, fertiliser use, and changes in land use.

Dr Jerry Dlamini, a distinguished lecturer and researcher specialising in agronomy within the Department of Soil, Crop, and Climate Sciences at the University of the Free State (UFS), is leading pioneering research in this field. His current project, @CROPGas on X, funded by the European Joint Programme (EPJ), with a budget of R22 million, focuses on investigating the impact of various conservation agriculture interventions on greenhouse gas emissions, primarily targeting nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2).

This two-year project, which commenced in December 2022 and concludes in December 2024, is a collaborative effort between European and African universities and institutions, including Rothamsted Research (UK), University College Dublin (Ireland), University of Nottingham (UK), University of Poznan (Poland), British Geological Surveys (BGS), University of Zambia (Zambia), University of Zimbabwe, and Lilongwe University of Agriculture and Natural Resources (Malawi). 

Dr Dlamini’s preliminary findings from the UFS Kenilworth Experimental Farm indicate that climate-smart agriculture interventions, such as legume rotation and no-till practices, have the potential to reduce the intensity of greenhouse gas emissions, particularly highly radiative gases like N2O.

“This is a significant finding,” Dr Dlamini noted, “as N2O has a global warming potential 100 times greater than CO2 over a 100-year horizon, meaning its impact on ozone depletion persists far longer despite being emitted in smaller quantities.”

Looking ahead, Dr Dlamini advocates for increased research efforts to quantify greenhouse gas emissions from South African croplands. He emphasises the importance of field-based measurements, akin to methodologies employed by other nations, to enhance the accuracy and effectiveness of South Africa's greenhouse gas inventories submitted annually to the United Nations Framework Convention on Climate Change (UNFCCC) and to devise effective mitigation strategies. 

News Archive

DNA sequencer launched at the UFS
2013-11-25

Dr Gansen Pillay, Deputy Chief Executive Officer of the National Research Foundation, explaining to the scholars what will be expected of them.

The University of the Free State (UFS) can now collect immensely valuable data on drug resistance in HIV/Aids and TB with the new DNA sequencer that was launched recently at the International workshop on HIV/AIDS and TB drug resistance at the Bloemfontein Campus.

The DNA sequencer will allow the Free State province to produce viral and bacterial genetic data to fight the local development of HIV/ Aids and TB drug resistance.

The HIV and TB epidemics have expanded very fast and South Africa now has the largest HIV and TB treatment programme in the world, with over 2 million patients on treatment. However, these successful treatment programmes are now being threatened by the appearance of drug resistance.

The Free State province has been at the forefront of fighting HIV drug resistance in South Africa and has one of the most advanced treatment programmes for the management of resistance strains in the country. In addition, researchers at the University of the Free State are leading partners in the Southern African Treatment and Resistance Network (SATuRN; www.bioafrica.net/saturn), a research network that has trained over 2 000 medical officers in the treatment of drug resistance strains.

The Department of Medical Microbiology and Virology in the Medical School at the UFS has partnered with the provincial department of health, the Medical Research Council (MRC) and the Delegation of the European Union to South Africa to fund a dedicated DNA sequencer machine that will be used to generate HIV and TB drug-resistance results. This new machine will enable cutting-edge research to take place, using the data in the province and, importantly, support patients with resistance strains to have access to advanced genotypic testing techniques.

“HIV drug resistance is a very serious problem in South Africa, and the recent advances in DNA testing technology allow clinicians in the province to access drug resistance testing, which enables them to manage patients appropriately who fail treatment, and use the results to cost-effectively extend and improve patients’ lives,” says Dr Cloete van Vuuren, Specialist in Infectious Diseases at the UFS’s Faculty of Health.

Dr Dominique Goedhals, pathologist from the Department of Medical Microbiology and Virology at the UFS, adds: “We have been looking forward to expanding our work with the clinicians and researchers, using DNA sequencing to shed light on the causes and consequences of drug resistance in urban and rural settings in the province.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept