Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 February 2024 | Story EDZANI NEPHALELA | Photo SUPPLIED
Jerry Dlamini
Dr Jerry Dlamini, lecturer and researcher specialising in agronomy within the Department of Soil, Crop, and Climate Sciences at the University of the Free State (UFS), is at the forefront of pioneering research in this field.

Greenhouse gas emissions represent a significant global concern, driving climate change on a massive scale. This concern is particularly pronounced in rainfed agriculture, where understanding and addressing these emissions are crucial for ensuring sustainable agricultural practices. 

In South Africa, rainfed agriculture is vital in food production, contributing substantially to the nation's agricultural output. However, this sector also stands as a notable contributor to greenhouse gas emissions, primarily through activities such as livestock farming, fertiliser use, and changes in land use.

Dr Jerry Dlamini, a distinguished lecturer and researcher specialising in agronomy within the Department of Soil, Crop, and Climate Sciences at the University of the Free State (UFS), is leading pioneering research in this field. His current project, @CROPGas on X, funded by the European Joint Programme (EPJ), with a budget of R22 million, focuses on investigating the impact of various conservation agriculture interventions on greenhouse gas emissions, primarily targeting nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2).

This two-year project, which commenced in December 2022 and concludes in December 2024, is a collaborative effort between European and African universities and institutions, including Rothamsted Research (UK), University College Dublin (Ireland), University of Nottingham (UK), University of Poznan (Poland), British Geological Surveys (BGS), University of Zambia (Zambia), University of Zimbabwe, and Lilongwe University of Agriculture and Natural Resources (Malawi). 

Dr Dlamini’s preliminary findings from the UFS Kenilworth Experimental Farm indicate that climate-smart agriculture interventions, such as legume rotation and no-till practices, have the potential to reduce the intensity of greenhouse gas emissions, particularly highly radiative gases like N2O.

“This is a significant finding,” Dr Dlamini noted, “as N2O has a global warming potential 100 times greater than CO2 over a 100-year horizon, meaning its impact on ozone depletion persists far longer despite being emitted in smaller quantities.”

Looking ahead, Dr Dlamini advocates for increased research efforts to quantify greenhouse gas emissions from South African croplands. He emphasises the importance of field-based measurements, akin to methodologies employed by other nations, to enhance the accuracy and effectiveness of South Africa's greenhouse gas inventories submitted annually to the United Nations Framework Convention on Climate Change (UNFCCC) and to devise effective mitigation strategies. 

News Archive

Dr Charlotte Boucher and Lindi Heyns examine possible anti-microbial activity in the skin of Western olive toad species
2014-12-22

 

Researchers Lindi Heyns and Dr Charlotte Boucher are working together on an interdisciplinary project between the Departments of Zoology and Entomology and Veterinary Biotechnology at the University of the Free State (UFS). The focus of their research is on the preliminary biochemical description of skin secretions in some South African toads.

The project forms part of an Honours study executed by Dwayne Pike under Heyns’ supervision. He is co-supervised by Dr Boucher who is assisting with the biochemical and microbiological assays.

Dr Boucher said, “Amphibians are characterised by the presence of cutaneous glands spread over the skin. There are two types of glands, namely mucous and granular (poison), located on the inner surface of the epidermis. Mucous glands are widely dispersed over the skin, while granular glands can be grouped and enlarged in specific regions. Mucous glands are generally associated with maintenance of humidity and cutaneous respiration, whereas granular glands function in chemical defence against predators and/or microbial infection. Studies indicate that the compounds produced by the granular glands belong to numerous chemical classes with diverse pharmacological activities.”

The products secreted by granular glands are rich in low molecular weight constituents of varied molecular types, including proteins, peptides and toxins. These secretions make the toad foul-tasting to predators and even toxic to other frog species. In addition, amphibians offer an attractive source of novel antimicrobials. Studies indicate that as a response to inhabiting microorganism-rich environments they synthesise and secrete a diverse array of antimicrobial peptides (AMPs) as an innate form of defence. Extensive research by various other research groups has been carried out on antimicrobial peptides of the genus Rana; however, hardly any studies have investigated the antimicrobial activity of African frog species.

The focus of this preliminary project is to determine the protein composition of the glandular secretions of the Western olive toad (Amietophrynus poweri), using biochemical tests, such as SDS-PAGE also known as protein gel electrophoresis combined with mass-spectrometry used to identify unknown peptides and proteins. This will give us an overview of the composition of the glandular secretions. Furthermore, we are also looking at microbiological tests, which include assays that test for possible anti-microbial activity against various bacterial and fungal species.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept