Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 February 2024 | Story VALENTINO NDABA | Photo Stephen Collett
Prof Bradley
Prof Bradley Smith tackles the ambiguities surrounding trust misuse during divorce proceedings.

In his inaugural lecture on 21 February 2024 at the University of the Free State (UFS), Prof Bradley Smith explored the complexities of trust misuse in the context of property disputes during divorce proceedings. Prof Smith is an Extraordinary Professor at the UFS Faculty of Law. Drawing on two decades of judicial evolution in the Supreme Court of Appeal (SCA), Prof Smith highlighted the inconsistencies in the SCA’s treatment of this issue that impedes attempts to curb “divorce planning” by way of a trust and proposed solutions to address them.

One of the core issues he identified is the abuse of trusts, where assets are placed within a family trust to diminish a spouse’s personal estate value while treating the trust property as personal property for personal gain. This is often done in an attempt to evade the financial consequences of divorce. Prof Smith explained that this practice undermines the essence of trust law and that the inconsistent approaches by our courts exacerbate the challenges in dividing property during divorce proceedings in a manner that respects the spouses’ matrimonial property regime.

Navigating challenges: reflections on research and its importance

Prof Smith’s proposal revolves around the development of a consolidated test for piercing the veneer of an abused trust, aiming to enhance legal certainty. He emphasised the necessity of a unified approach. “Utilising this test will ensure uniformity because of its applicability to all marriages out of community of property, irrespective of whether the accrual system is involved,” he said.

His meticulous examination of conflicting judgments was praised by Dr Brand Claassen, head of the Department of Private Law, who described it as “the work of a master craftsman”. Retired Judge of Appeal, Eric Leach, also highlighted its critical importance in clarifying complex legal issues for the public good.

“It is of critical importance and in the public interest for judicial decisions, particularly those of higher courts such as the Supreme Court of Appeal and Constitutional Court, to be subjected to careful and considered analysis and, if needs be, criticism. Prof Smith’s inaugural lecture on combating trust form abuse in the context of matrimonial property claims at divorce, in which he carefully considered and analysed the conflict between several Supreme Court of Appeal judgments, was a valuable and important study on the issue,” said Judge Leach. He added that he hoped Prof Smith’s research would be considered by the SCA in future.

Future directions: advancing discourse and sound legal theory

Looking ahead, Prof Smith envisions further research into the applicability of the consolidated test to marriages in community of property, aiming to address remaining uncertainties that lie at the intersection of matrimonial property and trust law. He emphasised the importance of countering the prevailing “catch-me-if-you-can” attitude in divorce matters, advocating for proactive measures to uphold fairness and justice in matrimonial property disputes.

In conclusion, Prof Smith’s inaugural lecture provided valuable insights into combating trust form abuse within the context of matrimonial property claims at divorce. His proposed solutions and ongoing research efforts signify a commitment to advancing discourse on trust law theory and practice, with the ultimate aim of a sound judicial approach that serves the needs of South African society.

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept