Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 February 2024 | Story EDZANI NEPHALELA | Photo LETHABO MACHABAPHALA
Theological Day 2024
From left to right: Prof Lodewyk Sutton (Acting Dean of the Faculty of Theology and Religion), Prof John Klassen (Dean Designate), Prof Heinrich Bedford-Strohnm (Moderator at the World Council of Churches) and Prof Henco van der Westhuizen (Associate Professor at the Faculty of Theology and Religion) participated in the Theological Day event held at the UFS Bloemfontein Campus.

South African democracy, born from the crucible of struggle, stands as a beacon of hope on the African continent. Rising from the shadows of apartheid, it has evolved into a vibrant, pluralistic society with inclusive governance and constitutional protections. However, as the nation approaches its forthcoming elections and enters its fourth decade of democracy, persistent challenges such as inequality, corruption, and unemployment continue to test the resilience of the citizens.

On 12 February 2024, the Faculty of Theology and Religion at the University of the Free State hosted an event themed “The end of democracy? theological perspectives” on the Bloemfontein Campus, commemorating Theological Day with intellectual discussions and celebrations. 

Associate Professor Prof Henco van der Westhuizen, from the Department of Historical and Constructive Theology, introduced the keynote speaker, Prof Heinrich Bedford-Strohnm, leader of the World Council of Churches, who shared insightful thoughts during the event. 

Prof Heinrich Bedford-Strohnm articulated, "Dignity might be mere words, but it carries profound meaning. We must question whether the principles inscribed in the South African Constitution are genuinely upheld. Democracy, according to the Bible, is about treating everyone equally, showing respect, and fostering understanding. It transcends mere power; it entails using power to safeguard the weak and more vulnerable, mirroring the ideals of the South African Constitution."

Addressing the impact of digitalisation on society, he noted that while it unites the world, it also poses challenges for democracy. Despite its potential to enhance participation, transparency, and accountability, the digital landscape, saturated with social media platforms, inadvertently fuels the commercial realm. Countless hours are spent disseminating unverified information, and fake news, and fostering hatred to benefit algorithms and the commercial sphere.  

While the South African Constitution grants the right to freedom of expression, Prof Heinrich Bedford-Strohnm advised churches to carefully navigate their involvement in political issues. “It's crucial to be mindful of the context, manner, and openness of communication for effective public discourse. While supporting political views is acceptable, active participation should be avoided.”

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept