Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 February 2024 | Story EDZANI NEPHALELA | Photo LETHABO MACHABAPHALA
Theological Day 2024
From left to right: Prof Lodewyk Sutton (Acting Dean of the Faculty of Theology and Religion), Prof John Klassen (Dean Designate), Prof Heinrich Bedford-Strohnm (Moderator at the World Council of Churches) and Prof Henco van der Westhuizen (Associate Professor at the Faculty of Theology and Religion) participated in the Theological Day event held at the UFS Bloemfontein Campus.

South African democracy, born from the crucible of struggle, stands as a beacon of hope on the African continent. Rising from the shadows of apartheid, it has evolved into a vibrant, pluralistic society with inclusive governance and constitutional protections. However, as the nation approaches its forthcoming elections and enters its fourth decade of democracy, persistent challenges such as inequality, corruption, and unemployment continue to test the resilience of the citizens.

On 12 February 2024, the Faculty of Theology and Religion at the University of the Free State hosted an event themed “The end of democracy? theological perspectives” on the Bloemfontein Campus, commemorating Theological Day with intellectual discussions and celebrations. 

Associate Professor Prof Henco van der Westhuizen, from the Department of Historical and Constructive Theology, introduced the keynote speaker, Prof Heinrich Bedford-Strohnm, leader of the World Council of Churches, who shared insightful thoughts during the event. 

Prof Heinrich Bedford-Strohnm articulated, "Dignity might be mere words, but it carries profound meaning. We must question whether the principles inscribed in the South African Constitution are genuinely upheld. Democracy, according to the Bible, is about treating everyone equally, showing respect, and fostering understanding. It transcends mere power; it entails using power to safeguard the weak and more vulnerable, mirroring the ideals of the South African Constitution."

Addressing the impact of digitalisation on society, he noted that while it unites the world, it also poses challenges for democracy. Despite its potential to enhance participation, transparency, and accountability, the digital landscape, saturated with social media platforms, inadvertently fuels the commercial realm. Countless hours are spent disseminating unverified information, and fake news, and fostering hatred to benefit algorithms and the commercial sphere.  

While the South African Constitution grants the right to freedom of expression, Prof Heinrich Bedford-Strohnm advised churches to carefully navigate their involvement in political issues. “It's crucial to be mindful of the context, manner, and openness of communication for effective public discourse. While supporting political views is acceptable, active participation should be avoided.”

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept