Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 January 2024 | Story Charlene Stanley | Photo Supplied
Mother tongue pride
UFS staff members and students celebrating learners’ achievements at the Philippolis Public Speaking Competition. Pictured are Jani de Lange and Likiledi Mokoena; back: Lusenda Machini, Kevin Cloete, Susan Lombaard, Tinotenda Magaya, and Mabatho Ntsieng.

A unique public speaking competition hosted in the small town of Philippolis has done wonders to not only build confidence in young mother tongue speakers, but to broaden the cultural perspectives of an entire community.

The Philippolis Public Speaking Competition has been hosted by the Unit for Language Facilitation and Empowerment (ULFE) and the Department of Community Engagement (CE) at the University of the Free State (UFS) since 2013. What started as a small competition for learners in this Southern Free State town, has grown into a much-anticipated annual event, drawing participants from schools in neighbouring towns such as Trompsburg, Bethulie, Jagersfontein, Fauresmith, Gariepdam, and Reddersburg.

Talking about heritage

Every year, learners from Grades 6 to 9 are invited to present a speech on a specific heritage-related topic. Participants are encouraged to speak in their mother tongues – which in this region are mainly Afrikaans, Sesotho, Setswana, and isiXhosa.

Interpreters from the UFS ULFE ensure that the audience can follow each speech. For the past few years, deaf learners from the Bartimea School for the Deaf and Blind in Thaba Nchu and Re Tlameleng School for the Deaf in Kimberley have made welcome appearances, assisted by UFS sign language interpreters.

“This is a wonderful opportunity to teach our young people about acknowledging and respecting different opinions – but also to consider perspectives from differently abled individuals,” enthuses Anita Muller, a teacher from Bergmanshoogte Primary School, who has been involved in the competition from the very beginning.

“Learners in rural areas so often believe they don’t have a voice, and that nobody is interested in their opinions,” she continues.

“This competition does wonderful work in building feelings of self-worth and self-confidence. And it is usually a welcome opportunity for our broader community to get together, learn about one another’s cultures, and change perspectives.” 

Embracing individuality

Jani de Lange, UFS Lecturer in South African Sign Language and Deaf Studies, and one of the coordinators of the project, says she was excited to note that the master of ceremonies of last year’s competition was a former participant in the very first event.

“This project gives me a sense of pride and reminds me why I am part of the UFS. It has been a real eye-opener to see how important it is for those involved,” she says.

“It encourages our young people to embrace their individuality, as we celebrate the cultures and traditions of all those who participate,” says Mabatho Ntsieng from the Engaged Scholarship Office. She says young people often lose sight of where they come from. By giving them opportunities to research topics linked to their heritage and then present their speech in their mother tongue, they can return to their cultural roots.

“It is wonderful to see how proud these participants are and the impact it has on the schools and the community.”

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept