Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 January 2024 | Story Gerda-Marié van Rooyen | Photo Chris Nelson
Dr Maryam Amra Jordaan
Dr Maryam Amra Jordaan, co-founded SA Rebuilders.

Only 16% of plastic gets recycled in South Africa, despite technological advancements. While the Extended Producer Responsibility (EPR) Regulation of 2021 assigns post-consumer recycling responsibility to producers, substantial efforts are needed to develop effective waste management strategies, heighten public awareness, discover practical solutions, and hold plastic-producing companies accountable.

Prioritising environmental sustainability

Dr Maryam Amra Jordaan co-founded SA Rebuilders with her husband, Yasar Amra, in 2016. By combining 3D printing, chemistry, and plastic recycling, they tackle socio-economic issues while prioritising environmental sustainability. As the daughter of a miner from Kimberley, Dr Jordaan is committed to mitigating the negative effects that industries have on the health, environment, and social aspects of local communities. She was honoured with an Alumni Cum Laude Award from the University of the Free State (UFS) for her work in this regard.

Dr Jordaan’s academic journey at the UFS from 2001 to 2013 includes a BSc in Chemistry and Physiology, BSc Honours, MSc, and a PhD in Organic Chemistry. She dedicated five years to lecturing and research on the Qwaqwa Campus and four years at the Mangosuthu University of Technology (MUT). During this time, she authored 19 pharmaceutical and environmental chemistry research papers and won numerous national and international awards. She entered the UFS with dreams of assisting in some way and ended up helping to solve the Sustainable Development Goals (SDGs).

“Remarkable potential for rapid prototyping and supply chain resilience through digitisation exists, but the current energy crisis hampers the full realisation of 3D printing’s potential,” Dr Jordaan explains. Added to this, is the complex endeavour of becoming a 3D engineer. “Expertise in materials science and project management is equally essential. Creativity, quick learning, and meticulous attention to detail are all characteristics necessary to excel as a 3D engineer.”

Seeking out biodegradable product alternatives

Dr Jordaan stresses the need for effective waste management, awareness, practical solutions, and accountability for individuals and plastic-producing companies. Therefore, she promotes reusable and recyclable shopping bags, among others, and instils this behaviour in her children. The Amras actively seek out biodegradable product alternatives, as they are fully aware of the environmental impact of the manufacturing industry.

They incorporated this ideology in the manufacturing process of organic butter by transforming the plastic waste from this process into a 3D filament. This product is currently undergoing SABS testing, after which it will be available to the local market.

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept