Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 January 2024 | Story Leonie Bolleurs | Photo Sonia Small
Prof Corinna Walsh
Prof Corinna Walsh says the PEA POD Infant Body Composition System works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

Nutritional and growth patterns during early life have been associated with health, development, and well-being throughout the life cycle. It is also associated with risks for developing obesity and non-communicable diseases, such as cardiometabolic diseases, later in life. These are the findings of Prof Corinna Walsh, Professor in the Department of Nutrition and Dietetics.

Maternal and child health

”In line with national priorities, a strong research focus area of the Faculty of Health Sciences and the School of Health and Rehabilitation Sciences is maternal and child health,” she says. She goes on to mention that the Department of Nutrition and Dietetics has established a reputable research programme. This programme focuses primarily on the nutritional status of pregnant women and how the early environment to which they are exposed during and after pregnancy affects short- and long-term health outcomes of the offspring.

“In our previous work, the assessment of birth outcomes of infants was, however, limited by the lack of equipment to analyse body composition. The research that we can conduct with the PEA POD® provides us with immense additional potential,” remarks Prof Walsh.

She explains, “The PEA POD Infant Body Composition System is an infant-sized air displacement plethysmography system. It works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

According to her, the assessment of body volume takes two minutes. “The PEA POD technique also does not require collection of any fluids and does not expose the infant to radiation. It can be performed as often as required without any risks and be used up to a maximum of 8-10 kg body weight, from birth to about eight months,” she says.

Advanced technology

In the context of research on infant body weight and composition, there is a need for accurate measurement techniques that can differentiate between fat mass and fat-free mass. Prof Walsh is of the opinion that traditional measures such as body mass index (BMI) and weight for length have limitations in this regard, as they do not provide a clear distinction between these components. Furthermore, BMI may not be reliable for assessing adiposity or obesity in paediatric populations, and it can vary significantly with age and gender.

Addressing these challenges, the PEA POD equipment offers advanced technology that allows for highly accurate quantification of infant body composition. This technological capability opens up opportunities to study the effects of early-life nutrition on growth and the developmental mechanisms that may lead to later comorbidities. So, when it comes to researching infant body weight and composition, the PEA POD equipment plays a crucial role in providing precise data and insights.

News Archive

Geology researcher wins international photographic contest
2017-06-02

Description: Dr Elizaveta Kovaleva Tags: Dr Elizaveta Kovaleva

In this winning photo, “Movement of the ancient sand”,
Dr Matthew Huber, postdoctoral research fellow in the
Department of Geology at UFS, is scaling an outcrop
of sandstone (former sand dunes) in the Zion National
Park in the US.
Photo: Dr Elizaveta Kovaleva


Dr Elizaveta Kovaleva and Dr Matthew Huber, postdoctoral research fellows in the Department of Geology at the University of the Free State (UFS), attended the European Geosciences Union (EGU) General Assembly in Vienna, Austria in April 2017, where Dr Kovaleva was declared a winner of the EGU photo contest with a photograph entitled “Movement of the ancient sand”.

Submitting the winning photo
Each participant could submit up to three photos to participate in the contest before the conference. From all the photographs 10 were selected and displayed for the entire week at the assembly so participants could vote for their three favourite photos. At the end of the week three winners were selected. The prize winners received a free EGU book of their choice, free registration for next year’s EGU and an option to judge the photo competition next year. The photos will be printed on postcards next year, so all participants can send them wherever they want around the globe.

“The picture was taken in the Zion National Park in the US. Myself and Dr Huber were travelling around the western states, visiting national parks. The person in the picture is Dr Huber,” said Dr Kovaleva.

Dr Kovaleva was also invited to participate - as a recently published author - in a workshop, called: ”Publishing in EGU journals: Solid Earth and Earth Surface Dynamics – Meet the Editors”.

At the assembly, Dr Kovaleva attended sessions on Tectonics and Structural Geology as well as on Geochemistry, Mineralogy, Petrology and Volcanology. These sessions were especially interesting in the scope of her research and are directly related to it. “I am a metamorphic petrologist, and with my PhD, I essentially studied microstructures. At the moment, I am studying the Vredefort impact crater, which has experienced both metamorphism and deformation,” she said.

“The winning photos will be printed on postcards,
so all participants can send them wherever they
want around the globe”.

Building scientific connections
For both researchers, the assembly was an opportunity to meet former colleagues and professors from universities all over the world and shake hands with authors whose papers and work they were familiar with, but had never met in person.

“EGU is a perfect opportunity to build scientific connections and relationships, advertise your research and start new collaborations and projects,” said Dr Kovaleva.

The EGU General Assembly 2017 was a great success, with 4 849 oral, 11 312 poster, and 1 238 PICO presentations. Some 649 unique scientific sessions, together with 88 short courses and 322 side events, created an interesting programme. At the conference 14 496 scientists from 107 countries participated, of whom 53% were under the age of 35. Thirty one were from South Africa.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept