Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 January 2024 | Story Leonie Bolleurs | Photo Sonia Small
Prof Corinna Walsh
Prof Corinna Walsh says the PEA POD Infant Body Composition System works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

Nutritional and growth patterns during early life have been associated with health, development, and well-being throughout the life cycle. It is also associated with risks for developing obesity and non-communicable diseases, such as cardiometabolic diseases, later in life. These are the findings of Prof Corinna Walsh, Professor in the Department of Nutrition and Dietetics.

Maternal and child health

”In line with national priorities, a strong research focus area of the Faculty of Health Sciences and the School of Health and Rehabilitation Sciences is maternal and child health,” she says. She goes on to mention that the Department of Nutrition and Dietetics has established a reputable research programme. This programme focuses primarily on the nutritional status of pregnant women and how the early environment to which they are exposed during and after pregnancy affects short- and long-term health outcomes of the offspring.

“In our previous work, the assessment of birth outcomes of infants was, however, limited by the lack of equipment to analyse body composition. The research that we can conduct with the PEA POD® provides us with immense additional potential,” remarks Prof Walsh.

She explains, “The PEA POD Infant Body Composition System is an infant-sized air displacement plethysmography system. It works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

According to her, the assessment of body volume takes two minutes. “The PEA POD technique also does not require collection of any fluids and does not expose the infant to radiation. It can be performed as often as required without any risks and be used up to a maximum of 8-10 kg body weight, from birth to about eight months,” she says.

Advanced technology

In the context of research on infant body weight and composition, there is a need for accurate measurement techniques that can differentiate between fat mass and fat-free mass. Prof Walsh is of the opinion that traditional measures such as body mass index (BMI) and weight for length have limitations in this regard, as they do not provide a clear distinction between these components. Furthermore, BMI may not be reliable for assessing adiposity or obesity in paediatric populations, and it can vary significantly with age and gender.

Addressing these challenges, the PEA POD equipment offers advanced technology that allows for highly accurate quantification of infant body composition. This technological capability opens up opportunities to study the effects of early-life nutrition on growth and the developmental mechanisms that may lead to later comorbidities. So, when it comes to researching infant body weight and composition, the PEA POD equipment plays a crucial role in providing precise data and insights.

News Archive

Project aims to boost science pass rate
2009-01-19

 
Attending the launch of the HP grant of about R1 million to the UFS are, from the left: Mr Leon Erasmus, Country Manager for HP Technology Services in South Africa, Prof. Teuns Verschoor, Acting Rector of the UFS, and Mr Cobus van Breda, researcher at the UFS's Centre for Education Development and manager of the project.
Photo: Lacea Loader
The University of the Free State (UFS), in partnership with computer giant Hewlett Packard (HP), wants to boost the pass rate of its science students by using mobile technology.

The UFS is one of only 15 universities across Europe, the Middle East and Africa and the only university in South Africa to receive a grant from HP to promote mobile technology for teaching in higher education valued at USD$ 100,000 (or about R1 million). Altogether 80 universities from 28 countries applied for the grant.

“Last year HP invited a number of selected universities to submit proposals in which they had to explain how they are going to utilise mobile technologies in the redesign of a course that is presented at the university. The proposal of the Centre for Education Development (CED) at the UFS entitled “Understanding Physics through data logging” was accepted,” says Mr Cobus van Breda, researcher at CED and manager of the project.

According to Mr van Breda, students who do not meet the entrance requirements for the three-year B.Sc. programme have to enroll for the four-year curriculum with the first year actually preparing them for the three-year curriculum.

In order to increase the success rate of these students, the project envisages to enhance their understanding of science principles by utilising the advantages of personal computer (PC) tablet technology and other information and communication technologies (ICT) to support effective teaching and learning methodology.

“By using PC tablet technology in collaboration with data-logging software, a personal response system, the internet and other interactive ICT applications, an environment different from a traditional teaching milieu is created. This will consequently result in a different approach to addressing students’ learning issues,” says Mr van Breda.

The pilot project was launched during the fourth term of 2008 when 130 first-year B.Sc. students (of the four-year curriculum) did the practical component of the physics section of the Concepts in General Science (CGS) module by conducting experiments in a computerised laboratory, using data-logging software amongst other technology applications. “The pilot project delivered good results and students found the interactive application very helpful,” says Mr van Breda.

”The unique feature of the latter is the fact that real-life data can be collected with electronic sensors and instantly presented as computer graphs. It can then be analysed and interpreted immediately, thus more time can be devoted to actual Science principles and phenomena and less time on time-consuming data processing,” says Mr van Breda.

The CGS module can be seen as a prerequisite for further studies in physics at university level and in this regard it is of essence to keep looking for new models of learning and teaching which can result in student success. This year the theoretical and practical component of the physics section of the CGS programme will be done in an integrated manner.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
16 January 2009
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept