Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 January 2024 | Story Leonie Bolleurs | Photo Sonia Small
Prof Corinna Walsh
Prof Corinna Walsh says the PEA POD Infant Body Composition System works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

Nutritional and growth patterns during early life have been associated with health, development, and well-being throughout the life cycle. It is also associated with risks for developing obesity and non-communicable diseases, such as cardiometabolic diseases, later in life. These are the findings of Prof Corinna Walsh, Professor in the Department of Nutrition and Dietetics.

Maternal and child health

”In line with national priorities, a strong research focus area of the Faculty of Health Sciences and the School of Health and Rehabilitation Sciences is maternal and child health,” she says. She goes on to mention that the Department of Nutrition and Dietetics has established a reputable research programme. This programme focuses primarily on the nutritional status of pregnant women and how the early environment to which they are exposed during and after pregnancy affects short- and long-term health outcomes of the offspring.

“In our previous work, the assessment of birth outcomes of infants was, however, limited by the lack of equipment to analyse body composition. The research that we can conduct with the PEA POD® provides us with immense additional potential,” remarks Prof Walsh.

She explains, “The PEA POD Infant Body Composition System is an infant-sized air displacement plethysmography system. It works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

According to her, the assessment of body volume takes two minutes. “The PEA POD technique also does not require collection of any fluids and does not expose the infant to radiation. It can be performed as often as required without any risks and be used up to a maximum of 8-10 kg body weight, from birth to about eight months,” she says.

Advanced technology

In the context of research on infant body weight and composition, there is a need for accurate measurement techniques that can differentiate between fat mass and fat-free mass. Prof Walsh is of the opinion that traditional measures such as body mass index (BMI) and weight for length have limitations in this regard, as they do not provide a clear distinction between these components. Furthermore, BMI may not be reliable for assessing adiposity or obesity in paediatric populations, and it can vary significantly with age and gender.

Addressing these challenges, the PEA POD equipment offers advanced technology that allows for highly accurate quantification of infant body composition. This technological capability opens up opportunities to study the effects of early-life nutrition on growth and the developmental mechanisms that may lead to later comorbidities. So, when it comes to researching infant body weight and composition, the PEA POD equipment plays a crucial role in providing precise data and insights.

News Archive

Cochlear implant changes Magteld's world
2009-11-06

The microphone is ready for Magteld Smith’s (second from the left) first radio interview after the cochlear implant was switched on by Mr Henk Wolmarans (right) of MedEl. With them are, from the left: Ms Vicki Fourie, Deaf Miss SA, Ms Eunika Smith from the SABC and Prof. Jonathan Jansen.
Photo: Leatitia Pienaar


Magteld Smith gave her first steps towards the world of the hearing when her cochlear implant was switched on in the Universitas Hospital this week.

A whole team was there to share her joy and disbelief and amazement the moment she could hear noises, voices and conversations. Among them were the Rector and Vice-Chancellor of the University of the Free State (UFS), Prof. Jonathan Jansen, and the acting dean of the Faculty of Heath Sciences at the UFS, Prof. Gert van Zyl.

“I can hear my own voice! I haven’t heard it for a long time. My wish is that every deaf child can get something like this,” she said while prodding Prof. Jansen to speak so that she can hear his voice.

Magteld is working at the university's Centre for Health Systems Research and Development and was deaf since birth. She lost her last bit of hearing due to meningitis last year. Her hearing aids could then not assist her to communicate and a cochlear implant was the only option.

A donation by the Austrian company MedEl made the implant possible. Prof. André Claassen, Head of the Department of Otorhinolaryngology at the UFS, says MedEl was also instrumental in the establishment of the implant programme at the Universitas Hospital and sponsored the first five implants at a total cost of R1 million.

Prof. Claassen says 27 implants have already been done here, but it came to an abrupt halt due to a lack of funds. Strong hearing aids are expensive and cochlear implants are even more expensive at R200 000 each. People with hearing disabilities must be identified at an early age as the brain’s ability to learn sound and voice diminishes after the age of three.
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept