Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 January 2024 | Story Leonie Bolleurs | Photo Sonia Small
Prof Corinna Walsh
Prof Corinna Walsh says the PEA POD Infant Body Composition System works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

Nutritional and growth patterns during early life have been associated with health, development, and well-being throughout the life cycle. It is also associated with risks for developing obesity and non-communicable diseases, such as cardiometabolic diseases, later in life. These are the findings of Prof Corinna Walsh, Professor in the Department of Nutrition and Dietetics.

Maternal and child health

”In line with national priorities, a strong research focus area of the Faculty of Health Sciences and the School of Health and Rehabilitation Sciences is maternal and child health,” she says. She goes on to mention that the Department of Nutrition and Dietetics has established a reputable research programme. This programme focuses primarily on the nutritional status of pregnant women and how the early environment to which they are exposed during and after pregnancy affects short- and long-term health outcomes of the offspring.

“In our previous work, the assessment of birth outcomes of infants was, however, limited by the lack of equipment to analyse body composition. The research that we can conduct with the PEA POD® provides us with immense additional potential,” remarks Prof Walsh.

She explains, “The PEA POD Infant Body Composition System is an infant-sized air displacement plethysmography system. It works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

According to her, the assessment of body volume takes two minutes. “The PEA POD technique also does not require collection of any fluids and does not expose the infant to radiation. It can be performed as often as required without any risks and be used up to a maximum of 8-10 kg body weight, from birth to about eight months,” she says.

Advanced technology

In the context of research on infant body weight and composition, there is a need for accurate measurement techniques that can differentiate between fat mass and fat-free mass. Prof Walsh is of the opinion that traditional measures such as body mass index (BMI) and weight for length have limitations in this regard, as they do not provide a clear distinction between these components. Furthermore, BMI may not be reliable for assessing adiposity or obesity in paediatric populations, and it can vary significantly with age and gender.

Addressing these challenges, the PEA POD equipment offers advanced technology that allows for highly accurate quantification of infant body composition. This technological capability opens up opportunities to study the effects of early-life nutrition on growth and the developmental mechanisms that may lead to later comorbidities. So, when it comes to researching infant body weight and composition, the PEA POD equipment plays a crucial role in providing precise data and insights.

News Archive

UFS to monitor the use of ARV-drugs on pregnant women and children
2004-12-08

The University of the Free State (UFS) is to establish a Pharmacovigilance Centre that will monitor the effects of Anti-Retroviral (ARV) drugs on HIV positive pregnant women and children starting early in the new year.

The UFS is one of only two institutions chosen by the Minister of Health, Dr Manto Tshabalala-Msimang, to establish such an ARV monitoring centre.

The other centre will be based at Medical University of South Africa (MEDUNSA) and will concentrate mainly on monitoring the effects of the drugs on adults.

“The establishment of the UFS’s Pharmaconvigilance Centre forms part of government’s Comprehensive Plan on HIV and AIDS, often termed the roll-out plan for ARV drugs. The centre’s primary responsibility will be to specifically monitor the use of these drugs in pregnant women, and children under the age of 13,” said Prof Andrew Walubo of the UFS’s Department of Pharmacology.

“Although most of the side effects of ARV drugs have been identified in other countries, it has now become critical to identify the side effects amongst the South African population. This is important because many people will be exposed to the drugs within a short time. Our aim is so identify the most common side effects and make recommendations for the prevention thereof. The centre will help in detecting the risk of using anti-retroviral drugs in pregnancy and children, and prevention of adverse drug reactions,” said Prof Walubo.

According to Prof Walubo 12 drugs will be monitored – these drugs will be selected according to the patient’s profile.

The centre will comprise of two components: A pregnancy registry, which will focus on a new-born child up until two months and a pediatric registry, which will focus on children who are born of mothers who used ARV drugs and children using ARV drugs.

According to Prof Walubo, the Pharmaconvigilance Centre will also be responsible for offering relevant technical advice, training and selected research on ARV drugs in these patients.

The centre will be fully sponsored by the national Department of Health. It will be based in the UFS’s Faculty of Health Sciences, Department of Pharmacology, and will be run in collaboration with experts from different departments in the faculty.

Media release
Issued by: Lacea Loader
Media Representative
Tel: (051) 401-2584
Cell: 083 645 2454
E-mail: loaderl.stg@mail.uovs.ac.za
8 December 2004

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept