Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 January 2024 | Story Leonie Bolleurs | Photo Sonia Small
Prof Corinna Walsh
Prof Corinna Walsh says the PEA POD Infant Body Composition System works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

Nutritional and growth patterns during early life have been associated with health, development, and well-being throughout the life cycle. It is also associated with risks for developing obesity and non-communicable diseases, such as cardiometabolic diseases, later in life. These are the findings of Prof Corinna Walsh, Professor in the Department of Nutrition and Dietetics.

Maternal and child health

”In line with national priorities, a strong research focus area of the Faculty of Health Sciences and the School of Health and Rehabilitation Sciences is maternal and child health,” she says. She goes on to mention that the Department of Nutrition and Dietetics has established a reputable research programme. This programme focuses primarily on the nutritional status of pregnant women and how the early environment to which they are exposed during and after pregnancy affects short- and long-term health outcomes of the offspring.

“In our previous work, the assessment of birth outcomes of infants was, however, limited by the lack of equipment to analyse body composition. The research that we can conduct with the PEA POD® provides us with immense additional potential,” remarks Prof Walsh.

She explains, “The PEA POD Infant Body Composition System is an infant-sized air displacement plethysmography system. It works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

According to her, the assessment of body volume takes two minutes. “The PEA POD technique also does not require collection of any fluids and does not expose the infant to radiation. It can be performed as often as required without any risks and be used up to a maximum of 8-10 kg body weight, from birth to about eight months,” she says.

Advanced technology

In the context of research on infant body weight and composition, there is a need for accurate measurement techniques that can differentiate between fat mass and fat-free mass. Prof Walsh is of the opinion that traditional measures such as body mass index (BMI) and weight for length have limitations in this regard, as they do not provide a clear distinction between these components. Furthermore, BMI may not be reliable for assessing adiposity or obesity in paediatric populations, and it can vary significantly with age and gender.

Addressing these challenges, the PEA POD equipment offers advanced technology that allows for highly accurate quantification of infant body composition. This technological capability opens up opportunities to study the effects of early-life nutrition on growth and the developmental mechanisms that may lead to later comorbidities. So, when it comes to researching infant body weight and composition, the PEA POD equipment plays a crucial role in providing precise data and insights.

News Archive

Research project gives insight into the world of the deaf
2005-11-30

Mr Akach in conversation (using sign language) with his assistant Ms Emily Matabane. Photo: Lacea Loader

UFS research project gives insight into the world of the deaf

The Sign Language Division of the University of the Free State’s (UFS) Department of Afro-Asiatic Studies and Language Practice and Sign Language has signed a bilateral research project with the universities of Ghent and Brussels to write a book on sign language. 

“We want to compare the Belgium and South African sign languages with each other.  The book will be about the deaf telling us about themselves and how they live.  It will also focus on the use of story telling techniques and the grammar used by deaf people.  We want to see if the hand forms and the grammatical markers and other linguistic features that deaf people from these two countries use are the same or not,” said Mr Philemon Akach, lecturer at the UFS Sign Language Division and coordinator of the research.  

According to Mr Akach, the sign language community in South Africa, with about 600 000 deaf people who use South African Sign Language (SASL) as first language, is quite big.  “Over and above the deaf people in South Africa, there are also the non-deaf who use SASL, like the children of deaf parents etc.  This book can therefore be used to teach people about the deaf culture,” he added.

Another of Mr Akach’s achievements is his election as Vice-President of the newly established World Association of Sign Language Interpreters (WASLI).  The association was established earlier this month during a conference in Worcester.

Mr Akach has been actively involved with sign language interpretation since 1986 and has been interpreting at the World Congress of the World Federation of the Deaf (WFD) since 1987.  “My appointment as Vice-President of the WASLI is an emotional one.  I have been involved with deaf people for so long and have been trying to create awareness and obtain recognition for sign language, especially in Africa,” said Mr Akach.  WASLI is affiliated to the WFD.

According to Mr Akach there was no formal structure in the world to support sign language and sign language interpreters.   “Now we have the backup of WASLI and we can convince governments in other African countries and across the world to support deaf people by supporting WASLI and therefore narrow the communication gap between the deaf and the hearing.  My main aim as Vice-President is to endeavour for the recognition of sign language and spoken language interpreters as a profession by governments,” he said. 

According to Mr Akach the formal training of interpreters is of vital importance.  “Anybody who has a deaf person in his/her family and can communicate in sign language can claim that they are an interpreter.  This is not true.  It is tantamount to think that all mother tongue or first language speakers are interpreters.  Likewise students who learn sign language up to whatever level and are fluent in signing, should still join an interpreter’s programme,” he said.

“Sign language interpreting is a profession and should be presented as an academic course alongside other spoken languages.  The UFS has been taking the lead with sign language and spoken language interpretation and was the first university on the African continent to introduce sign language as an academic course,” he said.

“Although sign language has always been an unknown language to young people it has become quite popular in recent years.  This year we had a total of 160 students at the Sign Language Section of the UFS and the numbers seem to increase steadily every year,” he said.

Mr Akach’s assistant, Ms Emily Matabane, is deaf and they communicate in sign language.  Ms Matabane also handles the tutorials with students to give them hands-on experience on how to use sign language.  


Media release
Issued by: Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
30 November 2005

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept