Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 January 2024 | Story Leonie Bolleurs | Photo Sonia Small
Prof Corinna Walsh
Prof Corinna Walsh says the PEA POD Infant Body Composition System works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

Nutritional and growth patterns during early life have been associated with health, development, and well-being throughout the life cycle. It is also associated with risks for developing obesity and non-communicable diseases, such as cardiometabolic diseases, later in life. These are the findings of Prof Corinna Walsh, Professor in the Department of Nutrition and Dietetics.

Maternal and child health

”In line with national priorities, a strong research focus area of the Faculty of Health Sciences and the School of Health and Rehabilitation Sciences is maternal and child health,” she says. She goes on to mention that the Department of Nutrition and Dietetics has established a reputable research programme. This programme focuses primarily on the nutritional status of pregnant women and how the early environment to which they are exposed during and after pregnancy affects short- and long-term health outcomes of the offspring.

“In our previous work, the assessment of birth outcomes of infants was, however, limited by the lack of equipment to analyse body composition. The research that we can conduct with the PEA POD® provides us with immense additional potential,” remarks Prof Walsh.

She explains, “The PEA POD Infant Body Composition System is an infant-sized air displacement plethysmography system. It works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

According to her, the assessment of body volume takes two minutes. “The PEA POD technique also does not require collection of any fluids and does not expose the infant to radiation. It can be performed as often as required without any risks and be used up to a maximum of 8-10 kg body weight, from birth to about eight months,” she says.

Advanced technology

In the context of research on infant body weight and composition, there is a need for accurate measurement techniques that can differentiate between fat mass and fat-free mass. Prof Walsh is of the opinion that traditional measures such as body mass index (BMI) and weight for length have limitations in this regard, as they do not provide a clear distinction between these components. Furthermore, BMI may not be reliable for assessing adiposity or obesity in paediatric populations, and it can vary significantly with age and gender.

Addressing these challenges, the PEA POD equipment offers advanced technology that allows for highly accurate quantification of infant body composition. This technological capability opens up opportunities to study the effects of early-life nutrition on growth and the developmental mechanisms that may lead to later comorbidities. So, when it comes to researching infant body weight and composition, the PEA POD equipment plays a crucial role in providing precise data and insights.

News Archive

UFS and Mexico forge links
2006-03-30

Some of the guests attending the signing of the memorandum of agreement were in front from the left Prof Wijnand Swart (Chairperson: Centre for Plant Health Management at the UFS), His Excellency Mauricio de Maria y Campos (Ambassador of Mexico in Southern Africa), Prof Magda Fourie (Vice-Rector: Academic Planning at the UFS) and Dr José Sergio Barrales Domínguez (Rector of the University of Chapingo in Mexico).
Photo: Stephen Collett

UFS and Mexico forge links
The Centre for Plant Health Management (CePHMa) in the Department of Plant Sciences at the University of the Free State (UFS) is presenting its first international conference.  The conference started yesterday and will run until tomorrow (Friday 31 March 2006) on the Main Campus in Bloemfontein. 

The conference is the first on cactus pear (or prickly pear) in South Africa since 1995.  It coincides with 2006 being declared as International Year of Deserts and Desertification by the United Nations General Assembly. 

During the opening session of the conference yesterday a memorandum of understanding (MOU) was signed between CePHMa and the University of Chapingo (Universidad Autonoma Chapingo) in Mexico.  The signing ceremony was attended by the Ambassador of Mexico in Southern Africa, His Excellency Mauricio de Maria y Campos, the Rector of the University of Chapingo, Dr José Sergio Barrales Domínguez, and the Vice-Rector: Academic Planning of the UFS, Prof Magda Fourie, amongst other important dignitaries. 

“South Africa and Mexico have a lot in common where agricultural practices in semi-arid areas and the role of the cactus pear are concerned,” said Prof Wijnand Swart, Chairperson of CePHMa at the opening of the conference.

He said that the MOU is the result of negotiations between CePHMa and the Ambassador of Mexico in Southern Africa over the past 12 months.

“The MOU facilitates the negotiation of international cooperative academic initiatives between the two institutions.  This entails the exchange of students and staff members of the UFS, curriculum development, research and community service,” said Prof Swart.

“During the next two days, various areas of interest will be discussed.  This includes perspectives from commercial cactus pear farmers in South Africa, the health management of cactus pear orchards, selection of new cultivars of cactus pear, and the nutritional and medicinal value of the crop,” said Prof Swart.

In his welcoming message Prof Swart explained that in recent years there has been increased interest in the cactus pear for the important role it can play in sustainable agricultural systems in marginal areas of the world.  These plants have developed phenological and physiological adaptations to sustain their development in adverse environments. 

“The cactus pear can serve as a life saving crop to both humans and animals living in marginal regions by providing a highly digestible source of energy, water, minerals and protein,” said Prof Swart. 

“In an age when global warming and its negative impact on earth’s climate has become an everyday subject of discussion, the exploitation of salt and drought tolerant crops will undoubtedly have many socio-economic benefits to communities inhabiting semi-arid regions,” said Prof Swart.

“Plantations of cactus pear grown for fruit, forage and vegetable production, as well as for natural red dye produced from the cactus scale insect known as cochineal have, over the last two decades, been established in many countries in South America, Europe, Asia and Africa.  The crop and its products have not only become important in international markets, but also in local markets across the globe,” said Prof Swart. 

Detailed discussions on the implementation of the MOU will take place between CePHMa and the University of Chapingo after the conference. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
30 March 2006

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept