Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 January 2024 | Story Leonie Bolleurs | Photo Sonia Small
Prof Corinna Walsh
Prof Corinna Walsh says the PEA POD Infant Body Composition System works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

Nutritional and growth patterns during early life have been associated with health, development, and well-being throughout the life cycle. It is also associated with risks for developing obesity and non-communicable diseases, such as cardiometabolic diseases, later in life. These are the findings of Prof Corinna Walsh, Professor in the Department of Nutrition and Dietetics.

Maternal and child health

”In line with national priorities, a strong research focus area of the Faculty of Health Sciences and the School of Health and Rehabilitation Sciences is maternal and child health,” she says. She goes on to mention that the Department of Nutrition and Dietetics has established a reputable research programme. This programme focuses primarily on the nutritional status of pregnant women and how the early environment to which they are exposed during and after pregnancy affects short- and long-term health outcomes of the offspring.

“In our previous work, the assessment of birth outcomes of infants was, however, limited by the lack of equipment to analyse body composition. The research that we can conduct with the PEA POD® provides us with immense additional potential,” remarks Prof Walsh.

She explains, “The PEA POD Infant Body Composition System is an infant-sized air displacement plethysmography system. It works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

According to her, the assessment of body volume takes two minutes. “The PEA POD technique also does not require collection of any fluids and does not expose the infant to radiation. It can be performed as often as required without any risks and be used up to a maximum of 8-10 kg body weight, from birth to about eight months,” she says.

Advanced technology

In the context of research on infant body weight and composition, there is a need for accurate measurement techniques that can differentiate between fat mass and fat-free mass. Prof Walsh is of the opinion that traditional measures such as body mass index (BMI) and weight for length have limitations in this regard, as they do not provide a clear distinction between these components. Furthermore, BMI may not be reliable for assessing adiposity or obesity in paediatric populations, and it can vary significantly with age and gender.

Addressing these challenges, the PEA POD equipment offers advanced technology that allows for highly accurate quantification of infant body composition. This technological capability opens up opportunities to study the effects of early-life nutrition on growth and the developmental mechanisms that may lead to later comorbidities. So, when it comes to researching infant body weight and composition, the PEA POD equipment plays a crucial role in providing precise data and insights.

News Archive

Physical Planning lives in recaptured space
2014-06-18

When the Department of Physical Planning decided on a new office premises, the team decided to tackle the project with an overarching theme – recycling.

It is important for Physical Planning to not only dictate to other departments on campus, but to set the example themselves,” says Nico Janse van Rensburg, Director: Physical Planning at the UFS. 

Recaptured space

New office space on campus is simply not available. It was therefore decided to recover space and a store room was identified. “Fortunately, the storage area had ceilings. However, it was dilapidated and was sagging all over. To divert attention from the ceiling, we painted it in a dark colour and the walls white.

“All wiring was also done superficially. It draws the attention away from the uneven surfaces and simplifies work on the wiring. Instead of trying to hide it, we made a focal point of it,” says Janse van Rensburg.

Recycled building materials

Lots of the building material that was used to convert the storage space into offices, was recovered from other building projects on campus. Material that would normally be discarded was utilised creatively to not only serve a practical purpose, but also an aesthetic one.

A laboratory basin was used as wash basin. Remaining parts of granite slabs from other sites were utilised as top for the basin. Existing toilets were also reused. To enhance the atmosphere, new taps in an affordable, but durable range were installed.

Recycled furniture

We rambled through every possible store room to find furniture. Tables were simply sanded and varnished and look better than new. Even the cabinet at the entrance was saved from wind and weather and reused.

Hot and smart

Only one screen wall was built. It was left in raw brick, unplastered and unpainted to contribute to contrasting textures. Existing walls were left painted or unpainted as it was before.

“The environment that was created breaks down several existing perceptions. Such as the perception that everything has to match; everything has to be plastered and painted and many others. This is an example of how different materials can be combined to create a lively environment.

“Staff members have already moved into their new offices and are very satisfied,” says Janse van Rensburg. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept