Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 January 2024 | Story Leonie Bolleurs | Photo Sonia Small
Prof Corinna Walsh
Prof Corinna Walsh says the PEA POD Infant Body Composition System works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

Nutritional and growth patterns during early life have been associated with health, development, and well-being throughout the life cycle. It is also associated with risks for developing obesity and non-communicable diseases, such as cardiometabolic diseases, later in life. These are the findings of Prof Corinna Walsh, Professor in the Department of Nutrition and Dietetics.

Maternal and child health

”In line with national priorities, a strong research focus area of the Faculty of Health Sciences and the School of Health and Rehabilitation Sciences is maternal and child health,” she says. She goes on to mention that the Department of Nutrition and Dietetics has established a reputable research programme. This programme focuses primarily on the nutritional status of pregnant women and how the early environment to which they are exposed during and after pregnancy affects short- and long-term health outcomes of the offspring.

“In our previous work, the assessment of birth outcomes of infants was, however, limited by the lack of equipment to analyse body composition. The research that we can conduct with the PEA POD® provides us with immense additional potential,” remarks Prof Walsh.

She explains, “The PEA POD Infant Body Composition System is an infant-sized air displacement plethysmography system. It works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

According to her, the assessment of body volume takes two minutes. “The PEA POD technique also does not require collection of any fluids and does not expose the infant to radiation. It can be performed as often as required without any risks and be used up to a maximum of 8-10 kg body weight, from birth to about eight months,” she says.

Advanced technology

In the context of research on infant body weight and composition, there is a need for accurate measurement techniques that can differentiate between fat mass and fat-free mass. Prof Walsh is of the opinion that traditional measures such as body mass index (BMI) and weight for length have limitations in this regard, as they do not provide a clear distinction between these components. Furthermore, BMI may not be reliable for assessing adiposity or obesity in paediatric populations, and it can vary significantly with age and gender.

Addressing these challenges, the PEA POD equipment offers advanced technology that allows for highly accurate quantification of infant body composition. This technological capability opens up opportunities to study the effects of early-life nutrition on growth and the developmental mechanisms that may lead to later comorbidities. So, when it comes to researching infant body weight and composition, the PEA POD equipment plays a crucial role in providing precise data and insights.

News Archive

UFS researcher runner-up in 2014 Women in Science Awards
2014-08-18

 

Prof Jeanet Conradie
Photo: Supplied

Prof Jeanet Conradie, professor in the Department of Chemistry at the University of the Free State (UFS), was the runner up in the senior category for Distinguished Women Researchers: Physical and Engineering Science in the Department of Science and Technology’s 2014 Women in Science Awards. With this award, female scientists and researchers are encouraged and rewarded, and also profiled as role models for younger women. 
 
Science and research, by which new concepts are discovered, is her great passion. Due to this keen interest in science, Prof Conradie studied a variety of subjects during her undergraduate years, providing her with a vast knowledge and the necessary background for her current main research interest, which is a combination of various scientific fields. Her PhD in Chemistry, as well as her strong background in Physics, Computer Science, Mathematics and Applied Maths, influenced her choice of research interest and expertise to gradually develop in the direction of computational chemistry, which is a beautiful combination of chemistry and physics. 
 
Today, Prof Conradie’s research expertise is in computational chemistry, using the super computer and appropriate software to simulate, understand and predict the behaviour of atoms and molecules in real life. The use of computational chemistry makes it possible to study chemical reactions and phenomena that are impossible or too dangerous to study experimentally. Her research team also performs experimental work in the laboratory to combine and compare with the computational analysis. Based on the results obtained, new materials with specific properties are developed. 
 
“We are very proud of Prof Conradie. This award is the result of 14 years of hard word, a lot of it after hours. We are fortunate to have someone like you as colleague who puts guidance to students and learners first in research, teaching and community service,” said Prof André Roodt, Head of the Department of Chemistry at the UFS. 
 
Prof Corli Witthuhn, Vice-Rector: Research said: “Prof Conradie serves as a role model for younger academic scholars in higher education through her motivation, productivity and drive. She also serves as an example of how female scientist can reach the top of their profession while juggling both professional and family responsibilities. This is well deserved recognition for her outstanding research achievements”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept